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Abstract 

An architecture for implementation of multivariable 
controllers is presented in this paper. The architecture 
is based on the Youla-Jabr-Bongiorno-Kucera param- 
eterization of all stabilizing controllers. By using this 
architecture for implementation of multivariable con- 
trollers, it is shown how it is possible to change from 
one multivariable controller to another multivariable 
controller online in a smooth way with guarantee for 
closed loop stability. This includes also the case where 
the controllers are unstable. Gain scheduled controllers 
can be implemented in this architecture. 

The general architecture for smooth online changes of 
multivariable controllers can also handle the start up 
and close down of multivariable systems. Furthermore, 
the start up of unstable multivariable controllers can 
also be handled in this architecture. Finally, implemen- 
tation of (unstable) controllers as a stable Q parameter 
in a Q-parameterized controller can also be achieved. 

1 Introduction 

Even for stable systems, most (post-) modern control 
techniques based on various optimization techniques, 
such as X2, X,, L1 /e1 norm based or p optimization 
based designs tend to give unstable controllers. 

The industrial use of unstable controllers has been lim- 
ited. This is unfortunate, considering that for some 
plants, no stable controller will achieve optimality (in 
a mixed sensitivity sense). Moreover, for some plants, 
no stable controller will robustly stabilize the system. 
Finally, for some unstable plants - violating the inter- 
lacing property - no stable controller will stabilize even 
the nominal system. 

The requirement of the controllers to be open-loop 
stable is usually known as strong stabilization. Re- 
cently, it has been shown that the order of a strongly 
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stabilizing X, controller can become unbounded as 
the plants approach having pole/zero cancellations [4]. 
Some bounds on performance for strongly stabilizing 
controllers can be found from [3]. 

Hence, there are good reasons to consider unstable mul- 
tivariable controllers for several industrial applications. 
There are, however, some quite severe practical prob- 
lems in implementing unstable controllers that are fre- 
quently overlooked or at least underemphasized in the 
literature on control theory. 

One problem is that simply starting up an unstable 
controller is difficult. Many industrial plants require 
soft start-up procedures, where the control signal is 
varied gradually from off to full power. This does not 
work in the case of an unstable controller, since the 
controller need the (full) plant to stabilize itself. 

Another problem is that most complex industrial ap- 
plications involve some kind of gain-scheduling proce- 
dures. Gain-scheduling is usually implemented as a 
bank of parallel controllers where most controllers are 
inactive. But if unstable controllers are left inactive, 
their internal states will tend to infinity. 

In this paper, we suggest a general framework for han- 
dling unstable controllers which can be applied both to 
start-up situations and to gain-scheduling implementa- 
tions. 

2 Controller Implementation 
The following results are derived by using coprime fac- 
torication of systems and controllers. However, it is 
straightforward to set up state space descriptions for 
the derived results. A state space description of the co- 
prime factorization for general controllers can be found 
in the book of Tay et al., [6]. 

Let us consider the following MIMO system given by: 

Gyu(s) = NM-l = M - l N ,  N ,  M ,  M, iV E R H ,  
(1) 
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Further, let a number of stabilizing controllers for the 
system G,, be given by: 

K ~ ( s )  Vivi-' = C-lVi, Vi, vi, Vi, E RH, (2) 

for i = 0,. . . ,p .  Note that the coprime factorizations 
can be chosen to satisfy the double Bezout equation 
given by: 

for i = 0, ' .  . ,p. 

Based on KO, all stabilizing controllers for the system 
G,,(s) can now be described by [7]: 

Ko(Q) = (U0 + M Q )  (Vo + N & ) - l ,  Q E RHW 

= K~ + ~ C ' Q  ( I  + v,-'NQ)-' v,-l 
(3) 

Based on this Youla-Jabr-BongiornoKucera (YJBK) 
parameterization of all stabilizing controllers given in 
(3) based on KO,  we have the following result, [l]. 

Theorem 1 Let the system be given by ( I )  and let a 
number of stabilizing controllers for the system be given 
by (2). Then  Ki, i = 1,. . . , p  can be implemented as 
Ko(Qi) where the stable Qi parameter is given by: 

Qi = UiVo - GUo, i = l , . . .  ,P  

Proof. Follows directly by simple calculations. 0 

The result show how it is possible to implement a con- 
troller as a stable Q parameter based on another stabi- 
lizing controller. The result also show that it is possible 
to change controller online without any jumps, just by 
scaling the Q parameter from zero to full value in a con- 
tinuous way. The closed loop system is guaranteed to 
be stable for all values of Qi. This is very useful in con- 
nection with implementation of unstable controllers. 

Moreover, the above result can also be applied in con- 
nection with implementation of unstable controllers for 
a stable system, where no other stabilizing controller 
are implemented. We have the following result. 

Lemma 2 Let K ,  = u,v;~ = V;'Ou, u ~ , K , U ~ , K  E 
RH, be an  unstable _controller for a-sttble system 
G,,(s) = NM-l  = M - l N ,  N , M , M , N  E RH,. 
The unstable controller can then be implemented as 

K ,  = K(Q,) = M Q ,  ( I  + MNQ,)-' M 

where 

where V and v satisfies the Bezout equations: 

Q ,  = 0,V = V,K,V = U,M-' 

V M = I ,  M V = I  

Proof. The proof is omitted. 0 

It is quite easy to show that the implementation of an 
unstable controller given in [5] is equivalent with the 
above implementation based on the YJBK parameter- 
ization. Let the controller from Lemma 2 be given by: 

K ~ ( Q )  = MQ,(I + M N Q , ) - ~ M  
with 

Q, = aG,V, CY E [O, 11 
which gives 

&(&,a) = aMV,(I  + ~ N f i , ) - ~  

= K,, for a = 1 

The controller given in [5] is given by: 

-1 
K(a)  = a (I + aK,G,, ( I  - KuGYu)-') 

x ( I  - KuGYu)-' K ,  

which can be rewritten into 

qff) = f f ( ~ -  K,G,,)-' 
-1 

x ( I  + aK,G,, ( I  - KuGYu)-') Ku 
-1 

= aMv,(I+aK,Nv,)  K ,  

= a M  (I + aV,N)-' U, 

= aMV,(I + CYNV,)-~ 

which shows that the two implementations are identi- 
cal. 

The result in Theorem 1 gives an implementation of a 
multivariable controller as a specific stable Q parame- 
ter in a parameterization of all stabilizing controllers. 
Theorem 1 gives one way to change the applied con- 
troller from KO to & online in closed loop and also 
in a way such that the closed loop system is stable for 
all applied controllers. Further, we do not necessary 
need to be limited to the use of two controllers given 
by KO and Ki. It is not only possible to change the 
controller from KO to one of the p controllers given by 
Ki, it is also possible to change the controller Ki to 
Kj,i,j= l , . . . , p ,  i#j. Inthecasewherewewantto 
change the applied controller between all p (or a subset) 
stabilizing controllers, we get the following result. 
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Theorem 3 Let the system GYu(s) be given by  (1) and 
let p stabilizing controllers for the system be given by  
(2). Further, let the controllers be implemented as: 

The closed loop system from d to e, Ted(S), is then 
given by 

Ted(S) = Z ( G , K )  = Ged f GeuK(I - G,uK)-lGgd 
Ki = Ko(Q) = KO + VCIQi( I+ V<'NQi)-lV-l 0 ,  ( 5 )  

with Qi given by  

Let a linear combination of the Qi parameters be given 
b y  

P 

Q = aiQi. 
i=l 

We can now give an explicit description of the closed 
loop system Ted when the controller K ( Q )  given in The- 
orem 3 is applied. 

Theorem 4 Let the closed loop transfer function be 
given by  (5). Further, let the stabilizing controller 
K(Q) be given by  

with E:=:'=, a( = 1. Then the resulting controller K is 
independent of KO and is given by  

with cy( 2 0,  Cy='=, ai = 1. Then the closed loop trans- 
fer function Ted as given by: 

Remark  1 It is important to note that the final con- 
troller is independent of KO. The reason is that it is as- 
sumed that the scaling parameters ai satisfy E:='=, ai = 
1. There is actually no real need in the method requir- 
ing the scaling parameters ai to sum to 1. However, if 
they do not satisfy this condition, the final controller 
will also be a function of KO. It should also be pointed 
out that the scaling parameters need not to be positive, 
negative values can be allowed without any closed loop 
stability problems. 

Proof. The proof is omitted. 0 

Using the complete description of the controller K ( s )  
given in Theorem 3 as a feedback controller, it is inter- 
esting to give an explicit equation for the closed loop 
system. Such an explicit description of the closed loop 
system can be applied in connection with the tuning of 
the controller, i.e. the selection of the a vector, such 
that the closed loop system is optimized with respect 
to the operating point. 

Let the complete open loop system be described by: 

where d is an external input vector, U is the control 
input vector, e is the external output signal to be con- 
trolled and y is the measurement vector. The transfer 
function G is given by 

(4) 

Proof. The proof is omitted. 0 

There is one important thing to note in connection with 
the factorization of system and controllers. This deals 
with the case when we want a state space description 
of the system and the applied controllers. It is not 
possible to apply the standard state space description 
in the case when observer based controllers are applied. 
If this is done, we will get a factorization of G which 
will depend on the applied controller. Instead the more 
general state space description of given in [6]. The only 
drawback with this method is that the order of some 
of the involved matrices will increase. 

3 Sys tem Variation 

Until now, it has been assumed that there was no de- 
scripiency between the model for the dynamic system 
to be controlled and the real system, which will of 
course not in general be the case. Variations or mod- 
eling errors in the dynamic system will shortly be con- 
sidered in the following. 

As in the controller case, it is possible to give a pa- 
rameterization, in terms of a stable parameter, of all 
systems stabilized by a given controller. Let us con- 
sider the system G,,,o(s) given by (1) and a controller 
KO with a coprime factorization given by (2). Is is still 
assumed that the coprime factors satisfies the double 
Bezout equation. Then all systems G,, (S) stabilized 
by KO is given by, [2, 61: 

with G,, = M N - l .  
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where S is denoted the dual YJBK parameter. Proof. The proof is omitted. 0 

Based on this parameterization of all systems stabilized 
by a given controller, we can give the dual result of 
Theorem 1. We then have the following result, [2]: 

Theorem 5 Let  a stabilizing controller KO be given by 
(2) for a number of systems GYu,, = NiM%rl given by 
(1). Then Gyu,i, i = 1 , .  . . , p  can be implemented as 
G,,,o(Si) where the stable Si parameter is  given by: 

Si = NiMo - MiNo, i = l , . . . , p  

or 
Si = Mi(Gyu,i - Gyu,o)Mo, i = l , . . . , p  

Proof. The proof of Theorem 5 follows directly the 
0 proof of Theorem 1 and is therefore omitted. 

As in the case with parameterization of all controllers, 
the closed loop transfer function will be an affine func- 
tion of the dual YJBK parameter S. The connection 
between the dual YJBK parameter S and different sys- 
tem descriptions have been considered in [2]. Here, let 
us consider the general case, where the uncertain is de- 
scribed by an LFT of a nominal system and a block, 
A ,  that include the system variation, 

where 

Gun, = ( ) 
Note, that for A = 0, G y u ( A )  = Gyu. This description 
of system variation as a function of the parameter A is 
very useful, especially in connection with the design of 
robust controllers for uncertain systems. In this case, A 
is in general unknown, apart from it being known to be 
stable, upper bounded by a scalar function and possibly 
the structure of A might be known. However, let us 
assume that the A parameter is known, which makes 
it possible to calculate S as function of A. The relation 
between S and A is given in the following theorem. 

Theorem 6 Let a stabilizing controller K for the sys- 
t e m  (1) be given. Further, let all systems stabilized by 
K be given by Gyu(S)  where S is the dual YJBKparam-  
eter. Moreover, let the system be described by Gyu(A)  
as function of the parameter A. It i s  further assumed 
that A is not  destabilizing the closed loop system. Then  
Gy,(S) and G y u ( A )  is identical i f  and only i f  the stable 
dual Y J B K  parameter S is selected as: 

It is here important to note that the two transfer func- 
tions are identical if the transfer functions between con- 
trol input U and measurement output y are considered. 
They will in general be different if other inputs/outputs 
are considered. Another important thing to note is that 
S(A) is stable as long as A does not make the closed 
loop unstable, i.e. ( I  - TlA)-' is stable, which was 
required. Therefore S will always be stable. 

Assume that Gun, has the following state space real- 

and assume that a stabilizing observer based feedback 
controller is given by 

1 1 F I o  
A + BuF + HCy + HDyuF I -H K ( s )  = 

where F is a stabilizing state feedback gain such that 
A + B,F is stable and H is a stabilizing observer gain 
such that A+HCy is stable. The state space realization 
of T ~ , A  is given by (note that T ~ , A  = 0): 

4 Controller Changes in Uncertain Systems 
Based on the above section, it is now possible to con- 
sider the more realistic case of controller change of un- 
certain systems. Let the uncertain system be described 
by G s  given by: 

] (9) 
Ged Geu Geq 

G s ( ~ )  = Gyd Gyu Gyq [ GTd Gru GTq 

where r E RP is the input vector to S and q E R" is 
the output vector from S ,  i.e. q = Sr. 

Closing the open loop from q to r by using the relation 
q = Sr gives the following realization of G s ( S ) :  
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Based on the equation for G s ( S )  given by (lo), we are 
now able to give the following result. 

Theorem 7 Let the open loop transfer function for 
G s ( S )  be given by  ( I O ) .  Let an internal stabilizing feed- 
back controller be given by  K ( Q , s ) .  Then the closed 
loop transfer function from the external input d to the 
external output e is given by  

Proof. See [2]. 0 

In [6], it is shown that the stability of the closed loop 
transfer function which involves both Q and S, requires 
that the nominal feedback system is stable and that Q 
is stabilized ( I  - QS)-'. 

As a direct consequence of Theorem 7, we get the closed 
loop transfer functions for S = 0 (parameterization of 
all stabilizing controllers for a nominal system) and for 
Q = 0 (parameterization of all systems stabilized by a 
given controller). The two transfer functions are given 
by: 

Ted(Q) = Ged + GeuUMGyd + GeuMQMGyd 
= TI  + T ~ , Q Q T ~ , Q  

Ted(S) = Ged + GeuUGGyd 
+(GeuU + Geq)S(UGyd + Grd) 

= TI + T ~ , s S T ~ ? S  

5 Conclusion 
Aspects of using parameterizations in connection with 
implementation of multivariable controllers have been 
considered. It has been shown how it is possible to 
apply the YJBK-parameterization with advantage in a 
number of cases. 

First of all, by using the YJBK-parameterization, it 
is possible to switch between controllers in a stable 
way. If the controller is changed directly, i.e. K = 
CY& + (1 - C Y ) K ~ ,  CY E [0,1], there is no guarantee that 
the controller is a stabilizing controller for a # 0 , l .  
This lack of closed-loop stability is removed by using 
a parameterization in connection with the controller 
implementation. Furthermore, it is also possible to op- 
timize a controller given as a combination of a number 
of pre-designed controllers. This optimization can if 
desirable be done on-line. 

The transients in the response is another important is- 
sue. This issue has not been investigated in this paper 
in detail. However, from the closed loop transfer func- 
tion, we can see that the controller parameter will be 
changed in a smooth way and might therefore avoid 
some of the transients in the response that will nor- 
mally appear if the controller is changed directly. 

The dual YJBK-parameterization has also shortly been 
considered, i.e. the parameterization of all systems sta- 
bilized by a given controller. Based on these two pa- 
rameterizations, the closed loop system has been con- 
sidered where both the YJBK and the dual YJBK pa- 
rameterization was applied. In this case, the closed 
loop transfer function will not be an affine function of 
Q and S. This will make the optimization of the Q 
parameter much more complicated, and is an issue for 
further research. 
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Another important issue is implementation of un- 
stable controllers. Again, by using the YJBK- 
parameterization, it has been shown how unstable con- 
trollers can be implemented by using only stable trans- 
fer functions. This is especially important in connec- 
tion with starting up unstable controllers. 
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