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Abstract

The suppression of microvibrations (low amplitude vibra-
tions with frequencies in the range 1 to 1000 Hz) is be-
coming increasingly important in spacecraft and other ap-
plications and can only be achieved (in most cases) by
active feedback control schemes. This paper describes a
Lagrange-Rayleigh-Ritz method which has been used to
develop a state space description of the generic case of
a vibrating panel with piezo-electric patches as actuators
and sensors, disturbances, and a payload. The resulting
models are used here to design H., based active feedback
control schemes for disturbance attenuation.

1 Introduction

Recent years have seen a dramatic increase in the stability
requirements placed on payload instruments, with conse-
quent increases in the level of vibration suppression de-
manded from the spacecraft structure. As a result, in this
and other areas, low amplitude vibrations at frequencies
between 1 Hz and 1000 Hz, generally termed microvibra-
tions, once neglected due to the low levels of disturbances
induced onbaord satellites, are now of critical importance.
As such, they are the subject of much research effort aimed
at developing efficient techniques for their control, eg [1].
In effect, such vibrations onboard spacecraft are produced
by the functioning of onboard equipment such as reaction
wheels, gyroscopes, thrusters; electric motors, and then
propagate through the satellite structure towards sensi-
tive equipment (receivers) thereby jeopardizing their cor-
rect functioning.

In practice, the reduction of the vibration level in a
structure can be attempted by action at the source(s),
receiver(s), and along the vibration path(s). At the
source(s), this action consists of attempting to minimize

the amplitude(s) of the vibration(s) by, for example, plac-
ing equipment on appropriate mountings. The same ap-
proach is commonly attempted at the receiver(s) but with
the basic objective of sensitivity reduction. Finally, along
the vibration path(s), modifications of structural elements
or relocation of equipment is attempted with the aim of
reducing the mechanical coupling between source(s) and
receiver(s).

All of the approaches described above are most often
implemented using passive damping technology and, for
routine applications, an appropriate combination of them
is often capable of producing the desired levels of dynamic
disturbance rejection. The use of active control techniques
in such cases would only be as a last resort to achieve de-
sired performance. In the case of microvibrations, how-
ever, only active control can be expected to provide the
required levels of suppression.

To investigate the use of active control to suppress
microvibrations in a structure, computationally feasible
models which retain the core features of the underlying
dynamics are clearly required. The most obvious approach
to the development of such models is to use finite element
methods (FEM) (see, for example, [2]) due to the accuracy
available with a sufficiently fine mesh. The only difficulty
with this approach is the computational intensity of the
processing required to generate the models and their use in
predicting system response. They can, however, be used,
as here, to verify that the modeling strategy employed pro-
duces ‘realistic’ models on which to base controller design
and evaluation.

Alternatives to FEM, can be classified as elastic wave
methods, variational methods, and mechanical impedance
based methods respectively. A study of the advantages
and disadvantages of these methods, together with back-
ground references on each of them, can be found in [3].
Based on this study, a Lagrange-Rayleigh-Ritz (LRR)
method is used to develop the mathematical models used
as a basis for the controller design studies reported in this
paper.

Previous work [4] has developed this LRR method, to-



gether with supporting software, to the stage where state
a state space model in the standard form for robust con-
troller design is generated given the dimensions, material
properties, and loading pattern of the structure to be con-
sidered. Also a systematic methodology for evaluating the
quality of the model so produced is included.

This paper uses this facility as a basis for the design
and evaluation of H., controllers for a standard config-
uration of a panel with a payload, a single disturbance
entering somewhere else on the panel, and two pairs of
piezo-electric patches used respectively as actuator and
sensors, again located at other positions. Although the
exposition below only covers a single-variable design, both
the modeling procedure and the control design technique
applies equally well in the case of several payloads, several
disturbances, several actuators and several sensors.

2 System Description and Model-
ing

The work reported here is based on a mass loaded panel
- an acceptable compromise between problem complex-
ity and the need to gain useful insights into the benefits
(and limitations) of active control schemes in this general
area. A schematic diagram of the arrangement considered
is shown in Figure 1, where the equipment mounted on
the panel is modeled as lumped masses and the distur-
bances as point forces. The controller design results given
in section 3 of this paper are for a representative problem
given in [4], and, in particular, a rectangular panel with
a lumped mass mounted on it, two pairs of piezo-electric
patches acting as the sensors and actuators of the control
system, and a harmonic point force acting perpendicular
to the panel as the disturbance source.
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Figure 1: Model layout

The sensors and actuators employed are twin patches
of piezoelectric material bounded onto opposite faces of
the panel. The bending vibrations of the panel pro-
duce stretching and shrinking of the patches depending
on whether they are on the top or the bottom of 1t. Due
to the piezoelectric effect, these deformations induce an
electric field perpendicular to the panel which is detected
by the electrodes of the patches. The outer electrodes
of the patches are electrically connected together and the

panel, which 1s grounded, is used as the other electrode
for both patches of the pair. The same configuration is
used for the actuator, but in this case the electric field 1s
applied externally to produce contraction or expansion of
the patch, which then induces a curvature of the panel.

A key point is that the effectiveness of the piezoelectric
elements, both as actuators and sensors, is significantly
reduced if the wavelength of the deformations is smaller
than the patch. The essential reason for this reduced effec-
tiveness is that the signal produced in this case is partially
or completely canceled by the opposing field generated by
the other part of the patch as it is deformed in the op-
posite direction. This limiting factor is especially impor-
tant when attempting to control high frequency vibrations
which have, of course, very short wavelengths. One pos-
sible means of increasing the effectiveness of the patches
in these situations would be to decrease the patch dimen-
sion, but care is needed since this would also diminish the
control action at low frequencies.

The LRR based procedure used to model this system
(Figure 1) is based on Lagrange’s equations of motion
which in the general case take the form
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Here T and U are the kinetic and potential energies of the
system, and ¢; and @); are the ¢th generalized co-ordinate
and force respectively. For the particular case considered

here, the kinetic and potential energies (elastic and elec-
tric) can be expressed as
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where T}y, Tj,, and T}, denote the kinetic energies of the
panel, lumped masses, and piezoelectric patches respec-
tively, Up; is the elastic energy stored in the panel, Uy, _,
is the elastic energy stored in the piezoelectric patches,
Upzernsieree: T€PTESENES the potential energy due to the volt-
age driven piezoelectric effect, and U, ., 1s the electric
energy stored due to the dielectric characteristics of the
piezoelectric material.

The displacement field (out-of-plane displacement w) is
obtained by a superposition of shape functions Sy, , (con-
sisting of the first Nm x Nn modes of the bare panel) mul-
tiplied by the time dependent modal co-ordinates ¢, n,
ie.

Nm Nn

w(z,y,t) = Z ZSmyn(x,y)quyn(t) =5 (3)

m=1n=1

where the N x 1 (N = Nm x Nn) column vectors s and
® contain the shape functions and modal co-ordinates re-
spectively.

The external excitation consists of Nf point forces F}
acting on the panel at arbitrary locations. Hence the gen-



eralized forces are of the form
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where f is the Nf x 1 column vector of forces and Sy is a
compatibly dimensioned matrix whose columns are given
by the model shape vector s evaluated at the correspond-
ing force locations.

Tt is now necessary to compute each of the terms in (2),
starting with the kinetic energies. Each of these terms
can be calculated using standard formulas [2]. Their final
forms in terms of the corresponding inertia matrices are
given by
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The potential energy of the system is stored as the elas-
tic energy of the panel and the elastic/electric energy of
the piezoelectric patches. In the case of the panel, use of
a standard formula [2] gives

1
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where K, is the panel stiffness matrix. Also, by assum-
ing that each patch is perfectly bonded onto the panel
and hence the stress-strain patterns in the latter can be
extended to the volume of the patch , the same procedure
as for the panel can be used to write

1
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where K., ., is the stiffness matrix which is fully popu-
lated and (see [2] for the details) given by
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In this last equation, N, is the number of patches, pz; de-
notes the volume of the ith patch, F,., its Young’s mod-
ulus, and v; its Poisson’s ratio.

The additional stress which arises in the i¢th piezoelec-
tric patch when an electric field e; () = v? (t)p; (where v is
the column vector containing the Np patch voltages, and
the column vector p; has zero entries except for the inverse
of the corresponding patch thickness in the éth position)
1s applied across the material can be expressed as

Colocs = OZelect _ by dpz + vdy, e
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Here d,, and dy. are the piezoelectric constants of the
material, which is assumed to have pole direction z per-
pendicular to the panel. This additional stress, multiplied
by the assumed strain, defines U, ,.,.., Which can be
calculated by substituting (9) into the expression

Upzelastelect:/// U'TEdl‘dde
Pz

By assuming d.. = dy. = d, it is possible to write the
elastoelectric energy stored in the Np patches as

(10)

U
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where again the matrix Kp._,,,.,.., can be computed using
a standard formula [2]. Also the electrical energy stored

in the piezoelectric material can be expressed as
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where e is the electric field and d is the electric displace-
ment (charge/area). For each patch, the electric displace-
ment is

di = €psy P v (13)

where epz; is the dielectric constant of the piezoelectric
material which forms the ¢th patch. Hence an equivalent
expression for the stored electric energy is

Upzelect = v (14)

1
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where the elements of the matrix K., _, are the capaci-
tances of the piezoelectric patches and can be computed
using a standard formula (see [4] for the details).

At this stage, all of the energy terms are available as
functions of the generalized co-ordinates ¢ and v and
straightforward application of Lagrange’s equations of mo-
tion (1) using the software developed in [4] now gives the
following equations of motion

Mlé + Arlqj) + [(szzelastelectv = Q
[(pzelastelect ¢ + [(pzelect v = 0 (15)
where
Ml = Mpl + Mpz + Mlz
K = Kpl + szezast (16)

The first equation in (15) is the result of differentiating
the energy terms with respect to the modal co-ordinates ¢
and the second by differentiating these terms with respect
to the voltages v, under the assumption that all modal
co-ordinates and voltages are degrees of freedom of the
system.

In the case when all the patches act as actuators, their
voltages v; will be externally driven and hence the sec-
ond equation in (15) is redundant. Alternatively, if all the



patches act as sensors, the second equation in (15) can be
used to obtain an expression for the voltages as a function
of the modal co-ordinates which, in turn, can be substi-
tuted into the first equation in (15) to produce a complete
set of equations for the unknowns ¢.

The most general case occurs when some of the patches
act as actuators and the others as sensors, and it is there-
fore necessary to partition the matrix Kp. ... to sep-
arate actuator and sensor contributions. Suppose, there-
fore, that v, and v, denote the vectors of the voltages
at the actuators and sensors respectively and K.,
and Kp.s the corresponding partitions of the ma-
triX Kps, uoieee - Then the first equation in (15) can be
written in the form

elastelect

elastelect

M¢ + Cs¢ + ([(elas + [(pzs)¢
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where all the inertia terms are included in the matrix A
and the stiffness due to elasticity in Koqs. Also

szs = _(szsezastezect)T (szsezect)_1szsezastezect (18)

represents the contribution to the stiffness from the piezo-
electric energy stored in the patches acting as sensors,
where K., .., is the partition of K., corresponding
to the sensors. Additionally, structural damping has been
added to the system by the inclusion of the term defined by
the damping matrix C. These last two equations can now
be used to write the system dynamics in the standard form
for robust controller design given the dimensions, material
properties and the loading/disturbance force pattern.

In the remainder of this paper, H., controllers are de-
signed and evaluated for the rejection at a specific point
on the panel of the effects of dynamic disturbances ap-
plied/arising at other locations on the panel. A treatment
of the verification procedure prior to accepting a model
developed by this approach for controller design studies
is omitted here for brevity and full details, together with
illustrative examples, can again be found in [4].

3 H, Control Design

There are several reasons why H., control design is the
obvious candidate for the control problem under consid-
eration, starting with the fact that the natural problem
formulation is in the so-called 4-block form, see e.g. [5].
Since control signals and disturbances are physically lo-
cated at different positions, they enter the dynamics in
rather different ways. Similarly, the measured outputs
are not the displacements at the positions of the pay-
loads, and therefore inferred outputs must be introduced.
Since the control system comprises two sets of inputs (dis-
turbances and actuator signals) and two sets of outputs
(payload displacements and sensor signals), a total four
matrix-valued transfer functions must be taken into con-
sideration. Failure to do so - as e.g. is typical for classical

control techniques - can be critical for the application un-
der consideration. However, for H., control techniques,
4-block formulations are absolutely standard.

Moreover, since the control objective is to suppress os-
cillations related to several modes, it is natural to employ
a frequency domain design method in a loop-shaping ap-
proach, where again H, control techniques are an obvious
choice. Also a more detailed examination of the open-loop
transfer functions from disturbances to payload displace-
ment reveals the following characteristics:

e In the interesting frequency range, the transfer func-
tion is flat in average but with enormous resonance
peaks at individual frequencies.

e BEach resonance peak is narrow in terms of frequency
range, but very tall.

e The system has a huge number of right half plane
7eros.

e The interpolation constraints' associated with the
most significant zeros are relatively moderate.

These observations indicate that a simple 'flattening
out’ as can be achieved by an unweighted H,, sensitiv-
ity design would be a viable approach to achieve the de-
sired disturbance attenuation. Simply by reducing the
overall unweighted H., norm, each resonance peak could
be substantially reduced, and that would mean that most
disturbances would be effectively rejected, since the am-
plitudes of displacements are mainly governed by resonant
phenomena.

The model derived from application LRR modeling pro-
cedure of the previous section 1s of the following form:

@ = Ar + B;f + By
d = Cyx (19)
e = (Cex

In this model z is the state vector which takes values in
RN with N = 2 x Nm x Nn, f is a vector defined by
the point force signals, and v is a vector containing the
control voltages supplied to the actuator patches, d is the
vector (if several payloads) of payload displacements, and
finally e is the vector of voltages generated by the sensor
patches.

The only real step needed to transform the derived
model into a usual H, 4-block problem is regularization,
il.e. the input to H., software, requires that the transfer
matrix from control signal to inferred outputs has a di-
rect feedthrough term of full column rank, and that - in a
dual fashion - the transfer function from disturbances to
measurements has a direct feedthrough term of full row
rank.

L Hy interpolation constraints are fundamental system limita-
tions which rely on poles and zeros in the right half plane. They
give rise to frequency domain bounds which can be easily computed
numerically.



It should be noted that this is not appropriately
achieved as sometimes suggested in the literature simply
by adding terms directly to the existing signals, e.g. by
modifying d = Cyxz and e = Cex to d = Cyz + £1v and
e = Cex + o f, respectively. The problem with this ap-
proach is that values of the perturbations that are suffi-
ciently large to satisfy the requirements set by the software
would drastically change the zero structure of the plant,
and hence give completely useless results.

One reasonable approach in the case considered here is
to apply the so-called cheap control approach, where a
number of fictitious disturbance signals, ¢, and a number
of fictitious payload displacements, d, are introduced. As
an alternative, the problem could be directly addressed as
a singular H, control problem [6]. The choice is largely a
numerical matter - see [7] for a discussion of the numerical
problems.

Now introduce the augmented signals

w:(i), u=v, z:(?),, y=e¢ (20)

where the dimension of ¢ equals the dimension of e and the
dimension of § equals the dimension of v. Also introduce

the augmented matrices
Cy
0

0
D12=<61[), Cy=0Ce, Do =(0 e21)

Blz(Bf 0), BQIBU, 01:

(21)

With these definitions, the system (19) is transformed into

= Axr + Byw + Bsyu
= Ciz + Diau
= Cyyr + Dyw

(22)

@ w8

The two parameters ¢; > 0 and €5 > 0 that are im-
plicit in the direct feedthrough terms have the following
interpretations. Firstly, €; 1s a penalty on the control sig-
nal. Choosing 1 large will give relatively small control
signals, whereas small values of 1 usually will give rather
large controller gains. In a dual fashion, €2 is a measure
of the allowable confidence in the measurements. In par-
ticular, selecting 5 large means that the measurements
from an abstract design point of view are considered to
be very noisy. Hence, only relatively small observer gains
can be applied. Conversely, if €5 is chosen to be small, the
quality of an observer estimating the states is not strongly
restricted by noise, so typically the observer gains will be
rather large.

It is easy to see that the closed loop transfer function
from f to d in (19) has an H, norm which is less than or
equal to the H., norm of the closed loop transfer function
from w to z for system (22). Also as g, = 0, ¢ = 1,2, the
latter H., norm tends to the former for the central con-
troller. Hence (excluding detailed discussion for brevity)
designing a controller for the system (22) will yield a con-
troller that gives ‘high performance’ when applied to (19).

The actual selection of ¢; and 5 is an iterative pro-
cedure. Intuitively, ¢; relates to the feedback problem,
whereas ¢5 relates to the estimation problem. Although
the separation property of H., theory is much more com-
plicated than the similar property of Hs, in actual practice
the selection of the two parameters can be done quite in-
dependently.

Hence, reasonable values of £1 and £5 can be obtained by
two (convex) line searches. First, £; is found, for example,
by a bisection procedure to yield a value of the closed loop
H., norm which is sufficiently small, whilst keeping the
controller gains reasonably bounded. This procedure is
then repeated for es.

A sample design (for the plant data and details of the
disturbance force see [4]) is shown in Figure 2 (for a more
detailed analysis see [8]) and shows that almost all the
resonance peaks are significantly reduced - for the first
modes this is up to 60 dB (Note the wide range logarith-
micscale). In fact, as predicted, all resonance peaks above
the average performance at low frequencies are drastically
reduced. However (and surprisingly) even most of the
peaks below DC-performance are reduced significantly as
well. This is not a behavior that is inherent of H., con-
trollers. Actually, sometimes the ‘flattening’ property of
H., control can make the closed loop behavior for some
frequency ranges worse than in open loop.

Fortunately, though, for the actual case, the computed
central H., controller achieves closed loop disturbance
attenuation in all relevant frequency regions, in spite of
the fact that a completely unweighted design was made.
Hence, there is no need to introduce narrow band-pass dy-
namical weights for the optimization problem, could cause
numerical and/or robustness problems.

Finally, it is instructive to consider the numerics of the
problem. In particular, actual design reported here was
undertaken for a LRR model with six modes in each di-
rection, which means that the resulting standard problem
was of order 2 x 67 = 72. Usually, this is not easily han-
dled by the rather sensitive commercial software for H.,
design. In the case discussed here, however, scaling the
signals appropriately was all that was required for a suc-
cessful optimization. In the guidelines for the use of H,
software 1t is sometimes recommended to use balanced re-
alizations. With some effort it was possible to produce
both a 72nd order balanced model as well as a reason-
able 65th order reduced model for this case. It was not,
however, possible to get the commercial software to work
for the balanced models, which is probably due to the fact
that the ‘nice’ second order block model structure was lost
in the balancing process.

4 Conclusions
In this paper, H,, control design has been successfully

applied the design of an active vibration damping system
for a model of a spacecraft structure. The design was
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Figure 2: Open and closed loop transfer functions

based on a mechanical model obtained by the Lagrange-
Rayleigh-Ritz approach. Although the model was of quite
large order compared to most models used for control de-
sign, the model order was orders of magnitude smaller
than that of a finite element model, which is not useful
for controller design purposes.

H, control design was an obvious choice, since the me-
chanical model already was in a four-block formulation;
since the control objectives had natural frequency domain
formulations; and since these objectives basically was a
Bode-plot flatness condition.

The actual H., design was based on a cheap control
approach. Tt behaved exactly as predicted, except that (i)
disturbance attenuations were almost better than hoped
for, and (ii) high frequency behavior could be handled
without introduction of weightings.

The design example given was based on a single in-
put/single output control configuration. Some computa-
tional experiments were done also for the multivariable
case, for which both the modeling and the control design
technique applies equally well. It was anticipated that sev-
eral actuator/sensor patches would improve performance
significantly. However, the actual improvement turned out
to be rather marginal. Therefore, the real benefit for us-
ing several patches seems to be in terms of control author-
ity. For example, in an implementation it might be useful
to have some physically small pairs of patches to handle
high frequency behavior, and at the same time have pairs
of patches of large physical dimensions to give control au-
thority at low frequencies. A possible controller architec-
ture would be parallel controllers, separated in frequency.
Such controllers could easily be computed by adding two
(first order) weights to the H standard problem formu-
lation.

Currently in depth analysis of the design methodology

given in this paper i1s being undertaken together with ex-
tensions to more complex geometries and/or loading pat-
terns. Output from this research will be reported in due
course.
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