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2 Problem FormulationThe approach taken is to model a potentially faulty component as a nominal component in parallelwith a (�ctitious) error component. The optimization procedure suggested in the paper then tries todetect the outgoing signal from the error component. This works of course only well in cases wherethe component is reasonably well excited, but on the other hand, if the component is not excited atall, there is absolutely no way to detect whether it is faulty, in theory or practice!In the following we shall describe the steps needed in order to model a faulty system in the formneeded for modern optimization tools, embarking from a set of physical equations.We shall consider a plant described by a model of the following form:_x = A�x + Bdy = C2x + Dd (1)where A� is a matrix that may deviate from a nominal value A0, by a (possibly nonlinear) dependencyof a fault. d is a vector valued signal that comprises all exogenous signals, such as disturbances, noise,and command signals.Hence, in this setting we do not allow directly for faults manifesting themselves in the input and/oroutput matrices (B/C) matrices which might be relevant in practice, e.g. in connection with gainvariations. However, it is quite easy to model such faults as well in the setup given by (1). The trickis to introduce an input �lter, for instance of the form 1�s+1 with � su�ciently small, and associatethe fault with the �ctitious state introduced in this way.The next step in the modeling procedure is to approximate the possibly nonlinear parameter depen-dencies of A� with polynomial (in full generality: multinomial) or rational ones. Here, the followingconsiderations must be taken:� rational approximations of a speci�ed order are usually better than polynomial approximationsof the same order� polynomial approximations of a speci�ed order give better numerical results than rationalapproximations of the same order in the algorithm given in this paperIn conclusion, at least for small or medium variations, polynomial approximations will give betterresults than rational ones, but either can be considered for any application. To obtain a polyno-mial approximation, the obvious approach is to compute a multivariate Taylor series. For rationalapproximation the number of methods are legio. (For example, the function sin(�);�1 < � < 1 isapproximated very well by the rational function f2(�) = �1+0:185�2 but equally well by the polynomialfunction f1(�) = � � 16�3 + 1120�5.)We are now faced with a model of the form (1) where A� takes the form:A� = A0 +Xi fi(�1; : : : ; �p)Ai (2)where each fi are polynomial or rational functions of the parameters �1; : : : ; �p, satisfying fi(0; : : : ; 0) =0 (the non-faulty operation mode). Typically, each Ai will have only entries with values 0 and 1.The third step in the problem setup is to rewrite the model (2) as a linear fractional tranformation.A general procedure to achieve this is described in [ZDG96, Section 10.2]. As a result we get a system2



of the form: _x = Ax + B1wfp = Cfxy = C2x + D21w (3)where B1 = � Bf B � ; D21 = � 0 D � ;w = � wfd � ; wf = �parfpand �par = 0B@ �1I1 0 00 . . . 00 0 �pIp 1CAwhere the Ii's are identity matrices. The dimension of each identity matrix depends on the order ofthe corresponding parameter �i in the polynomial or rational approximation. The matrix A will ingeneral di�er from A0, but will be of the same dimension. Without loss of generality, the model (2)can be assumed to be normalized such that each parameter �i varies between -1 and 1.This general representation of a system with parametric faults is depicted in Figure 1.�parA Bf BCf 0 0C2 0 D
- ��� wf dfpyFigure 1: Formulation of a system with parametric faults as a linear fractioncal transformation inthe fault parameters �parThe next step in setting up the fault detection and isolation problem as a standard optimizationproblem is to introduce the isolation error ep as:ep = fp � f̂pwhere f̂p is the estimation of fp to be generated.The �nal model becomes: _x = Ax + B1w + B2uz = C1x + D12uy = C2x + D21w (4)where B1 = � Bf B � ; w = � wfd � ; B2 = 0; u = f̂p;z = � fpep � ; C1 = � CfCf � ; D12 = � 0�I � ;D21 = � 0 D � 3



The null matrix B2 and the notation u = f̂p is introduced simply to be consistent with the so-calledstandard problem notation as e.g. in [ZDG96].The signals and interconnection structure de�ned in this way is depicted in Figure 2. Note, that a�ctitious performance block �perf has been introduced. The signi�cance of this block is the following.According to the small gain theorem, the H1 norm of the transfer function from d to e is boundedby 
 if and only if the system in Figure 2 is stable for all �perf, k�perfk1 < 
.Hence, the problem of making the norm of the fault estimation error bounded by some quantity hasbeen transformed to a stability problem. We shall give more details on this issue in the followingsection.
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Figure 2: Interconnection structure with parametric faults �par in linear fractional representationand a �ctitious performance block �perfFinally, we introduce � = ��par 00 �perf�Extracting this block from the diagram in Figure 2, gives Figure 3 which shows the �nal standardproblem formulation.3 Main ResultsThe main result is:Theorem 1 Let F (s) be a linear �lter applied to the system (4) as u = F (s)y, and assume that F (s)satis�es: kF` (Gzw; F )k� < 
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Figure 3: Standard problem formulation. The middle block is the same as the one indicated by athin line in Figure 2then the resulting isolation error is bounded by:kepk < 
Nwhere N is the excitation level of the system, i.e. kwk = N .In the following we shall present a synthesis procedure for F (s).A number of di�erent more or less complicated synthesis methods can be applied on the abovedesign problem given in Theorem 1. The main problem with the above design problem is that theperturbation block � consists of both real and complex perturbations. The standard � synthesismethod, [ZDG96], can not in general be applied without introducing conservatism in the design.The reason is that the standard � synthesis method can only handle complex perturbations. Anumber of alternative synthesis methods for mixed perturbations has been considered in [FFDM96]in connection with design of a missile autopilot.Indeed, it is possible to apply the standard � synthesis, if an additional scaling matrix is introducedin the method. This extra scaling matrix takes into account the di�erence between the mixed andthe complex �. In the following, the complex � and the modi�ed � synthesis methods are shortlydescribed.3.1 � SynthesisWe may now formulate an optimal robust performance problem in terms of �:F (s) = arg minF (s)2 F
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where F denotes the set of all nominally stabilizing controllers (there might not exist an admissiblecontroller achieving the minimum, but we make this abuse of notation for convenience). ~G is thesystem, see Figure 3. Unfortunately (5) is not tractable since � cannot be directly computed. Ratherthe upper bound �min is used to formulate the control problem:F (s) = argminF2F sup! infD(!)2D;G(!)2G inf�(!)2R+f�(!) j��(�(!)) � 1g (6)where �(!) =�D(!)F`( ~G(j!);F (j!))D�1(!)�(!) � jG(!)��I +G2(!)�� 12 :where D = fdiag (D1; � � � ;Dp; dIperf )���Di 2 Cki�ki ;D�i = Di > 0; d 2 R; d > 0oG = fdiag (G1; � � � ; Gp; O)���Gi 2 Cki�ki ; Gi = G�i o :The structure of D and G depend on the structure of the perturbation block �.For purely complex perturbations, the control problem reduce toF (s) = argminF2F sup! infD2D f�� (D(!)F` � ~G(j!); F (j!)�D�1(!)�o : (7)The control problems (6) and (7) are both scaled H1 optimization problems. ScaledH1 optimizationshave recently been an area of intensive research within the automatic control community. However,no solution to (6) or (7) has yet been found. Rather iterative approximate solution procedures havebeen developed for both purely complex and mixed perturbation sets.3.2 Complex � SynthesisAn approximation to complex � synthesis can be made by the following iterative scheme. For a�xed controller F (s), the problem of �nding D(!) at a set of chosen frequency points ! is just thecomplex � upper bound problem which is a convex problem with known solution. Having found thesescalings we may �t a real rational stable minimum phase transfer function matrix D(s) to D(!) by�tting each element of D(!) with a real rational stable minimum phase SISO transfer function. Wemay impose the extra constraint that the approximations D(s) should be minimum phase (so thatD�1(s) is stable too) since any phase in D(s) is absorbed into the complex perturbations. For a givenmagnitude of D(!), the phase corresponding to a minimum phase transfer function system may becomputed using complex cepstrum techniques. Accurate transfer function estimates may then begenerated using standard frequency domain least squares techniques.For given scalings D(s), the problem of �nding a controller (in our case a �lter) F (s) which minimizesthe norm kF`(D(s) ~G(s)D�1(s); F (s))kH1 will be reduced to a standard H1 problem. Repeating6



this procedure several times will yield the complex � upper bound optimal controller provided thealgorithm converges. Even though the computation of the D scalings and the optimal H1 controllerare both convex problems, the iteration procedure is not jointly convex in D(s) and F (s) and counterexamples of convergence has been given [Doy85]. However, the iteration seems to work quite wellin practice and has been successfully applied to a large number of applications. Furthermore, withthe release of the MatLab �-Analysis and Synthesis Toolbox, commercially available software nowexists to support complex � synthesis using this iteration.3.3 Mixed � SynthesisA detailed description of the mixed � synthesis method described in the following can be found in[NSTCA97, TCASN95].The main idea of the proposed mixed � iteration scheme is to perform a scaled complex � synthe-sis where the di�erence between mixed and complex � is taken into account through an additionalscaling matrix �(s). Given the augmented system ~G(s), a stabilizing controller F1(s) (e.g. an H1optimal controller) we may compute upper bounds for � across frequency given both the \true" mixedperturbation set � and the fully complex approximation �c, i.e. �i are considered as a complex pa-rameter. In order to \trick" the H1 optimization in the next iteration to concentrate more on mixed�, we will construct an open loop system ~GD�1(s) which, when closed with the previous controller,has frequency response equal to the mixed � upper bound just computed. In the mixed � iteration,however, the structure of the approximation is di�erent. ~GD� = �D ~GD�1 is constructed by applyingtwo scalings to the original system ~G(s). A D scaling such that ��(F`(D ~GD;F )) approximates thecomplex � upper bound and a � scaling to shift from complex to mixed �. In each iteration, � canbe computed as �i(s) = � 
i(s)Inze 00 Iny �where 
i(j!) = (1� �i)j
i�1(j!)j+�i �̂�(F`( ~G(j!);Fi(j!)))�̂�c(F`( ~G(j!);Fi(j!)))�i is a certain �ltering variable, see below, nze denotes the number of measurement outputs and nzedenotes the number of external outputs. For perfect realizations of the scalings we will have�� �F` � ~GD�1(j!); F1(j!)�� =�̂� �F` � ~G(j!); F1(j!)��where �̂� denoted the upper bound for �. The controller F2(s) then will minimize the H1-norm ofan augmented system which closed with the previous controller F1(s) has maximum singular valueapproximating mixed �. New mixed and complex � bounds may then be computed and the proceduremay be repeated.Applications of the mixed � method can be found in [NSTCA97, TCASN94, TCASN95]. It is shownthat the above mixed � synthesis method are more optimal than the direct mixed � synthesis methoddescribed in [You94].4 A Combined FDI SetupAs mentioned above, parametric faults in actuator and sensor dynamics can easily be modeled inthe approach of this paper by a simple trick. However, the additive fault description is the most7



used approach, see e.g. [DG96, NS97, PC96]. A system setup for parametric and additive faults willshortly be considered in the following.Let us consider a plant described by:_x = A�x + Bd + Bfafay = C2x + Dd + Dfafa (8)where fa is the additive fault input vector.For obtaining a standard optimization problem, the isolation error ea is introduced as, in the theparametric fault case: ea = fa � f̂awhere f̂a is the estimate of fa, that need to be generated byf̂a = F (s)yCombining the model for the parametric fault case given by (4) with the the above model in (8),gives the following complete system setup for both additive and parametric faults._x = Ax + ~B1 ~w + ~B2~u~z = ~C1x + ~D12~uy = C2x + ~D21 ~w (9)where ~B1 = � Bf Bfa B � ; ~B2 = 0;~u = � f̂p̂fp � ; ~z = 0@ fpepea 1A ;~C1 = 0@ CfCf0 1A ; ~D12 = � 0�I � ;~D21 = � 0 Dfa D �and ~w = 0@ wffad 1A ; wf = 0B@ �1I1 0 00 . . . 00 0 �pIp 1CA fpThe design synthesis given in Section 3 can then be applied directly to the above system. Only the� block need to be modi�ed.5 ConclusionA systematic modeling and synthesis procedure for deriving fault detection and isolation �lters forparametric faults has been presented. Further, a combined setup for fault detection and isolation insystems including both parametric as well as additive faults has been given.The derived method includes a possibility for trading o� the risk of undetected faults to the risk offalse alarms.The FDI setup considered in this paper deals only with the nominal case. However, the synthesisprocedure for deriving fault detectors can quite easily be extended to handle model uncertainties,8
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