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Abstract. In this paper, methods are presented for calculating the maximal parameter pertur-
bation bounds underH2 performance constraints for a family of uncertain systems and for calculating
the average H2 performance under such parameter variations. The uncertain systems are described
by state space models with nonlinear (polynomial) dependencies on real uncertain parameters. All
results obtained are based on necessary and sufficient conditions. As a special virtue of the approach,
the proposed algorithms for stability analysis and for performance analysis turn out to have exactly
the same algebraic structure. An example illustrates the results and the algorithms.
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1. Introduction. Robust performance analysis for uncertain control systems,
which is now receiving a great deal of attention (see [4, 9] and references therein), is
a relatively new area in comparison with robust stability analysis. For linear time-
invariant systems, the H2 performance metric arises naturally in a number of different
physically meaningful situations; see [4, 6, 3]. The H2 performance of a linear time-
invariant system is measured via the H2 norm of its transfer matrix. As long as this
H2 norm is less than a given upper bound, the design can stop, and there is usually no
need to seek the minimal norm and/or this might not be advisable due to robustness
considerations.

Suppose now that the H2 norm of a nominal (stable) system is less than a given
upper bound. Then the question is whether the norm is still less than this upper bound
after suffering a parameter perturbation, or alternatively, how to find the maximal
domain for perturbation parameters under stability and H2 norm constraints.

This paper will consider the latter problem and calculate the maximal perturba-
tion interval or radius in perturbation parameter space. The results obtained are not
only sufficient but also necessary. The paper is different from most previously pub-
lished papers which deal with a fixed parameter domain and affine perturbations. One
of our motivations comes from [4], which computed the supremum of the H2 norm
in the case of an affine perturbation with perturbation parameter q ∈ [0, 1]. Also in
similarity with that paper we shall compute not only the maximal perturbation radii
subject to stability and performance constraints but also the average performance
over a fixed perturbation set.
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The notation used throughout the paper is as follows. Denote the real number set
by R and the complex plane (the complex open left half plane) by C (C−). Let cs:
Rm×n → Rmn be the column stacking operator on a matrix and ⊕: Rn×n×Rm×m →
Rmn×mn be the standard matrix Kronecker sum defined in [2]. Finally, let λk(·) be
the kth eigenvalue of a square matrix.

2. Problem formulation. Consider a linear time-invariant system

ẋ(t) = A(q)x(t) +B(q)w(t),
z(t) = C(q)x(t),

(2.1)

where x ∈ Rn, w ∈ Rm, and z ∈ Rp are state, disturbance, and performance vectors,
respectively; A(q), B(q), and C(q) are (of compatible dimension) continuous matrix
functions of the perturbation parameter vector q = [q1, q2, . . . , ql]

T ∈ Rl. The transfer
function matrix from w to z can be expressed as T (s, q) = C(q)(sI − A(q))−1B(q).
A square constant matrix is called stable if all of its eigenvalues lie in C−. The
corresponding transfer function T (s, q) is said to be stable for a given q if A(q) is
stable and its H2 norm is defined by

‖T (s, q)‖2 .
=

{
1

2π

∫ +∞

−∞
trace [T (jω, q)T ∗(jω, q)] dω

}1/2

,(2.2)

where T ∗(s, q) .
= T ′(−s, q) and (·)′ denotes transpose.

We shall make the following standing assumptions on the nominal system—given
by (A(0), B(0), C(0))—and on the parameter dependence:

AS1. A(0) is stable.
AS2. ‖T (s, 0)‖22 < γ.
AS3. The system matrices may be parameterized as

A(q)
.
= A0 + qA1 + · · ·+ qm1Am1 ,

B(q)
.
= B0 + qB1 + · · ·+ qm2Bm2 ,

C(q)
.
= C0 + qC1 + · · ·+ qm3Cm3 ,

where all of Ak, Bk, and Ck are given constant matrices.
Here, γ is a given positive constant which reflects the tolerance of the system as
measured by the H2 performance (for instance, an acceptable output variance of (2.1)
to a white noise signal w). The goal is to find the “maximal domain” in Rl so that
‖T (s, q)‖22 < γ for every q in the domain. A prerequisite for doing this is that A(q)
must be stable for all q in this domain. This means that the robust stability analysis
must be completed first (see relevant results in [1, 5, 7, 8]).

The relevant problems will in this paper only be considered for the single pa-
rameter case, i.e., l = 1. The two parameter case, l = 2, can at least in principle
be handled by the approach described below applying a line search. However, for
medium or large scale problems, computational issues will limit the practical use of
this.

To formulate the problem of determining the maximal perturbation radius, first
define

r−s
.
= inf{r < 0 : A(q) is stable ∀q ∈ (r, 0)},(2.3)

r+
s
.
= sup{r > 0 : A(q) is stable ∀q ∈ (0, r)},(2.4)

r−2
.
= inf{r < 0 : A(q) is stable and ‖T (s, q)‖22 < γ ∀q ∈ (r, 0)},(2.5)

r+
2
.
= sup{r > 0 : A(q) is stable and ‖T (s, q)‖22 < γ ∀q ∈ (0, r)}.(2.6)
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Then (r−s , r
+
s ) is the maximal perturbation interval of q while keeping the sta-

bility of A(q), and (r−2 , r
+
2 ) is the maximal perturbation interval of q while keeping

‖T (s, q)‖22 < γ.
Problem 2.1. Suppose that system (2.1) satisfies AS1, AS2, and AS3.
(a) Find r−s and r+

s .
(b) Find r−2 and r+

2 .
Remark 2.2. Obviously, (r−2 , r

+
2 ) ⊂ (r−s , r

+
s ).

The notion of average performance can be defined in terms of the following prob-
lem.

Problem 2.3. Suppose that system (2.1) satisfies AS1, AS2, and AS3 and that
two numbers q and q are given, where r−s < q < q < r+

s .

Find
1

q − q
∫ q
q
‖T (s, q)‖22 dq.

This definition follows the convention in [4]. It can be argued that an alternative
problem formulation similar to Problem 2.3 but without the square would be inter-
esting as well. That problem also admits a solution but not one which is as easy to
interpret in terms of the problem parameters as the one given for Problem 2.3 below.

Remark 2.4. The integral boundaries of Problem 2.3 have been chosen to be
strictly inside the stability interval (not on the closure). This is because, usually, the
integral would become unbounded on the stability boundary.

3. Preliminaries. The main idea in this paper is to transform functions that are
rational in the independent variable (the uncertain parameter) into a matrix version
of the companion form, utilizing the fact that the “denominator” is based on a matrix
valued polynomial map. In what follows, we shall provide a matrix result which will
prove useful in this respect.

Let M(r) = M0 + rM1 + · · ·+ rmMm, where all of the Mk’s are n × n constant
matrices, and |M0| 6= 0 (| · | denotes the determinant). Let

r− .
= sup{r < 0 : |M(r)| = 0},(3.1)

r+ .
= inf{r > 0 : |M(r)| = 0}(3.2)

be the maximal perturbation bounds for nonsingularity of matrices. By simple oper-
ations on the matrix and its determinant (see [8]), it can be shown that

r− =
1

λ−min(M)
,(3.3)

r+ =
1

λ+
max(M)

,(3.4)

where M is an mn×mn matrix given by

M
.
= −


O −I O · · · O
O O −I · · · O
...

...
...

. . .
...

O O O · · · −I
M−1

0 Mm M−1
0 Mm−1 M−1

0 Mm−2 · · · M−1
0 M1

 ,(3.5)

λ−min(·) stands for the minimal value of the negative real eigenvalues (let λ−min(·) = 0−

if there exist no negative real eigenvalues) and λ+
max(·) stands for the maximal value



AVERAGE H2 PERFORMANCE AND MAXIMAL PERTURBATION RADIUS 1745

of the positive real eigenvalues (let λ+
max(·) = 0+ if no positive real eigenvalues),

respectively.
Formulae (3.3) and (3.4) suggest the following algorithm.
Algorithm 3.1 (the maximal perturbation bounds for nonsingularity of matri-

ces).
Step 1. Input Mk, k = 0, 1, . . . ,m, where |M0| 6= 0;
Step 2. Define M as in (3.5);
Step 3. Calculate all the eigenvalues of M;
Step 4. Find r− and r+ based on (3.3) and (3.4), then output.

Algorithm 3.1 will be one of the cornerstones below in solving Problems 2.1 and
2.3. Algorithm 3.1 is conceptually clear and easy to implement, although, admittedly,
the numerical aspects can be quite involved for large scale problems, since the relevant
matrices will be of very high order. Hence, the main applications for the results below
will be in terms of small or medium scale problems.

The following lemma helps us to transform Problem 2.1(a) into that of the max-
imal perturbation bounds for the nonsingularity of matrices.

Lemma 3.2. Suppose that
(1) Q is a singly connected domain in Rl, and 0 ∈ Q,
(2) A(0) is stable.

Then A(q) are stable ∀q ∈ Q if and only if |A(q)⊕A(q)| 6= 0∀q ∈ Q.
Proof. Recall the continuity of A(q), B(q), C(q) in q and that

λk(A(q)⊕A(q)) = λi(A(q)) + λj(A(q)),

k = 1, . . . , n2; i, j = 1, . . . , n.

From this observation the lemma becomes obvious.
By using Lemma 3.2 it follows that

r−s = sup{q < 0 : |A(q)⊕A(q)| = 0} (scalar case),(3.6)

r+
s = inf{q > 0 : |A(q)⊕A(q)| = 0} (scalar case),(3.7)

rs = inf{r : |A(q)⊕A(q)| = 0 for some q, ‖q‖ ≤ r}(3.8)

(multiparameter case).

Instead of (2.2) in the frequency domain, use the state space approach to compute

‖T (s, q)‖22 = trace{C ′(q)C(q)Q(q)},
where Q(q) = Q(q)′ satisfies

A(q)Q(q) +Q(q)A(q)′ +B(q)B(q)′ = 0.

It is easy to show the following compact formula (or see [4]):

‖T (s, q)‖22 = −cs[C ′(q)C(q)]′ · [A(q)⊕A(q)]−1 · cs[B(q)B′(q)].(3.9)

Going one step from (3.9), the following result is obtained, which helps transform
Problem 2.1(b) into that of the maximal perturbation bounds for nonsingularity of
matrices.

Lemma 3.3. Suppose that
(1) Q is a singly connected domain in Rl, and 0 ∈ Q,
(2) A(q) are stable ∀q ∈ Q,
(3) ‖T (s, 0)‖22 < γ.



1746 KE-YOU ZHAO, MICHAEL J. GRIMBLE, AND JAKOB STOUSTRUP

Then ‖T (s, q)‖22 < γ ∀ q ∈ Q if and only if |Mγ(q)| 6= 0∀q ∈ Q, where

Mγ(q)
.
= A(q)⊕A(q) +

1

γ
cs[B(q)B′(q)] · cs[(C ′(q)C(q)]′.(3.10)

Proof. ‖T (s, q)‖22 < γ ∀q ∈ Q
⇔ γ + cs[C ′(q)C(q)]′ · [A(q)⊕A(q)]−1 · cs[B(q)B′(q)] > 0 ∀q ∈ Q (from (3.9));
⇔ |γI + [A(q) ⊕ A(q)]−1 · cs[B(q)B′(q)] · cs[C ′(q)C(q)]′| > 0 ∀q ∈ Q (use equality
|γI +XY | = |γI + Y X|);
⇔ |γ[A(q)⊕A(q)]−1| · |Mγ(q)| > 0 ∀q ∈ Q (from (3.10));
⇔ |Mγ(q)| 6= 0∀q ∈ Q (due to the continuity ofA(q), B(q), C(q) to q, and Lemma 3.2).

The rest of the proof is trivial and thus omitted.
By using Lemma 3.3 we obtain the following formulae:

r−2 = sup{q ∈ (r−s , 0) : |Mγ(q)| = 0} (scalar case),(3.11)

r+
2 = inf{q ∈ (0, r+

s ) : |Mγ(q)| = 0} (scalar case),(3.12)

r2 = inf{r : r ≤ rs and |Mγ(q)| = 0 for some q, ‖q‖ ≤ r}(3.13)

(multiparameter case).

In section 2 we presented two types of problems. One is the maximal perturbation
bounds for system stability; the other is the maximal perturbation bounds for system
performance. Lemmas 3.2 and 3.3 help us to transform these two into the maximal
perturbation bounds for nonsingularity of matrices. This means that the resulting
algorithms will be similar in spirit.

4. Maximal stability and performance radii. This section will describe the
main formulae and algorithms.

By using matrix multiplication and the expressions of A(q), B(q), C(q) in Prob-
lem 2.1, it can be seen that

A(q)⊕A(q) = A0 + qA1 + · · ·+ qm1Am1 ,(4.1)

cs[B(q)B′(q)] = b0 + qb1 + · · ·+ q2m2b2m2
,(4.2)

cs[C ′(q)C(q)] = c0 + qc1 + · · ·+ q2m3c2m3
,(4.3)

where

Ak = Ak ⊕Ak, k = 0, 1, . . . ,m1,

b0 = cs [B0B
′
0] , . . . ,bk = cs

 ∑
i+j=k

BiB
′
j

 , . . . ,b2m2
= cs

[
Bm2

B′m2

]
,

c0 = cs [C ′0C0] , . . . , ck = cs

 ∑
i+j=k

C ′iCj

 , . . . , c2m3
= cs

[
C ′m3

Cm3

]
.

Substituting the above expressions for A(q), B(q), and C(q) in (3.10), it can be written
then as

Mγ(q) = M0γ + qM1γ + · · ·+ qmMmγ ,(4.4)

where m = max{m1, 2(m2 +m3)} and

M0γ = (A0 ⊕A0) +
1

γ
cs [B0B

′
0] · cs [C ′0C0]

′
,(4.5)
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and all of other Mkγ (the detailed expressions are omitted) depend on Ai, bj , and ck
in a similar fashion.

By recalling Algorithm 3.1 and using (3.6), (3.7), and (4.1), the following result
is obtained.

Theorem 4.1. Assume that the system (2.1) satisfies AS1, AS2, and AS3. Then
the following two statements are equivalent:

(1) system (2.1) is stable ∀ |q| < δ,
(2) min {−r−s , r+

s } > δ.
To compute the maximal perturbation stability bounds, we can devise the follow-

ing algorithm from the above results.
Algorithm 4.2 (the maximal perturbation bounds for Problem 2.1(a)).

Step 1. Input Ak, k = 0, 1, . . . ,m, where A0 must be stable;
Step 2. Calculate Ak, k = 0, 1, . . . ,m1;
Step 3. Let Mk = Ak, recall Algorithm 3.1, then compute r− and r+;
Step 4. Let r−s = r− and r+

s = r+, and output.
From AS2, Lemma 3.3, and (4.5), it can be shown that |M0γ | 6= 0. By recalling

Algorithm 3.1 and using (3.11), (3.12), and (4.4), the following result is obtained.
Theorem 4.3. Assume that the system (2.1) satisfies AS1, AS2, and AS3. Then

the following two statements are equivalent:
(1) ‖T (s, q)‖2 < γ ∀ |q| < δ,
(2) min {−r−s , r+

s } > δ.
Similarly, to compute the maximal perturbation performance bounds, we can

devise the following algorithm from the above results.
Algorithm 4.4 (the maximal perturbation bounds for Problem 2.1(b)).

Step 1. Input Ai, Bj, and Ck, where we must have AS1 and AS2;
Step 2. Calculate Ai, bj, and Ck, and also m;
Step 3. Calculate Mkγ ;
Step 4. Let Mk = Mkγ , and recall Algorithm 3.1 to get r− and r+;
Step 5. Output r−2 = max{r−s , r−}, r+

2 = min{r+
s , r

+}.
Remark 4.5. Algorithms 4.2 and 4.4 do not need any iteration.
Reference [5] gave the maximal perturbation bounds for Problem 2.1(a) in the

simplest case (affinely linear perturbation of a single parameter).

5. Average H2 performance. To compute the average performance we follow
the line of approach of [4]. In similarity with that approach we shall further assume
thatB(q) and C(q) are fixed matrices, i.e., we have the following uncertainty structure.
AS4. The system matrices may be parameterized as

A(q)
.
= A0 + qA1 + · · ·+ qm1Am1 ,

B(q)
.
= B0,

C(q)
.
= C0.

This assumption can be lifted at the cost of more complicated expressions. These,
though, can be obtained easily for a specific application, for instance, by the use of
a symbolic algebra package, and the more general result is straightforward, following
the idea below.
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We define the following matrix:

A
.
=


O −I O · · · O
O O −I · · · O
...

...
...

. . .
...

O O O · · · −I
A−1

0 Am1
A−1

0 Am1−1 A−1
0 Am1−2 · · · A−1

0 A1

 ,

where, as above, Ak = Ak ⊕ Ak, k = 0, 1, . . . ,m1. Note that A0 is invertible due to
assumption AS1. Also define

B
.
=

 0
...
A−1

0 cs(B0B
′
0)

 .

Finally, we need

C
.
=
(

0 . . . 0 cs (C ′0C0)
′ ) .

With these definitions, we can obtain the following result for the average H2 perfor-
mance of the parameter dependent system.

Theorem 5.1. Assume A(q), B(q), and C(q) are as described in AS4 with A(0)
stable. Let q and q be two real numbers satisfying r−s < q < q < r+

s , where r−s and r+
s

are as defined in (2.3) and (2.4). Then

1

q − q
∫ q

q

‖T (s, q)‖22 dq = − 1

q − qCA−1
(
log(I + qA)− log(I + qA)

)
B,

where log(·) denotes the matrix logarithm, i.e., the inverse of the matrix exponential.
Proof. It is straightforward using (3.9) to show that

‖T (s, q)‖22 = −C(I + qA)−1B.

Hence,∫
‖T (s, q)‖22 dq = −C

(∫
(I + qA)−1 dq

)
B = −C

(
A−1 log(I + qA)

)
B.(5.1)

The last equality holds whenever the argument of the logarithm is a nonsingular
matrix. This condition, however, is fulfilled in any open subset of (r−s , r

+
s ) due to (3.6)

and (3.7).
In certain nongeneric cases (where controllability or observability is lost), it might

make sense to extend the calculation of average performance to the boundaries of
stability. In that case, the integral in (5.1) becomes more involved. Indeed, let T be
a nonsingular matrix, such that

T−1AT =

[
Ã 0
0 A0

]
,

where Ã is nonsingular and A0 is nilpotent of order k. (One possibility is to compose
Ã and A0 by Jordan blocks and to choose the columns of T as the corresponding
generalized eigenvectors.)

Then it is easy to show that∫
‖T (s, q)‖22 dq = −CT

[
Ã−1 log(I + qÃ) 0

0 qI +
∑k−1
i=1 (−1)i q

i+1

i+1 Ai
0

]
T−1B.
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6. Example. An example with a single perturbation parameter is cited below.
Let

A(q) =

[ −2 1
0 −1.5

]
+ q

[
0 1
0 0

]
+ q2

[
0 0
1 0

]
+ q3

[
1 1
1 0

]
,

B(q) =

[
1 0
0 1

]
+ q

[
1 0
1 2

]
, C(q) =

[
1 1

]
.

It is easy to show that

A0 =

[ −2 1
0 −1.5

]
is stable, that

T (s, 0) =
[

1
s+2

s+3
(s+2)(s+1.5)

]
,

and that ‖T (s, 0)‖22 ≈ 0.8214 < 1 = γ. In this example it may be shown that

A(q)⊕A(q) =


−4 1 1 0
0 −3.5 0 1
0 0 −3.5 1
0 0 0 −3

+ q


0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0



+ q2


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0

+ q3


2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 ,

cs[B(q)B′(q)] =


1
0
0
1

+ q


2
1
1
4

+ q2


1
1
1
5

 ,
and

cs[C ′(q)C(q)] =


1
1
1
1

 .
Furthermore,

Mγ(q) =


−3 2 2 1
0 −3.5 0 1
0 0 −3.5 1
1 1 1 −2

 + q


2 3 3 2
1 1 1 2
1 1 1 2
4 4 4 4



+ q2


1 1 1 1
2 1 1 1
2 1 1 1
5 6 6 5

 + q3


2 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

 .
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Finally, (r−s , r
+
s ) = (−1.6710, 0.7683) can be calculated, which shows that the fam-

ily A(q) is stable ∀ q ∈ (−1.6710, 0.7683), and (r−2 , r
+
2 ) = (−1.5670, 0.0442), meaning

that ‖T (s, q)‖22 < 1 ∀ q ∈ (−1.5670, 0.0442). These two intervals are furthermore the
largest intervals with these properties.

If now, in compliance with Assumption AS4, we fix the input matrix

B(q) ≡
[

1 0
0 1

]
,

we obtain a larger performance interval:
(
r−2 , r

+
2

)
= (−1.6668, 0.3182), where the H2

norm is bounded by 1. Moreover, in that interval, the average performance can be
expressed in terms of√√√√∫ r+

2

r−2

‖T (s, q)‖22 dq =

√
− 1

r+
2 − r−2

CA−1
(
log(I + r+

2 A)− log(I + r−2 A)
)
B,

≈ 0.7428

which for this case is in fact better than the nominal performance, ‖T (s, 0)‖2 ≈
0.9063 !

7. Conclusions. Methods for calculating the maximal parameter-perturbation
bounds under H2 performance constraints for a family of systems described by state
space models, with nonlinear dependence on real uncertain parameters, have been
presented. The results are not conservative as the information of the system structure
is used completely. The algorithms as presented here, for robust performance radii and
for stability radii, are algebraically similar in nature. Finally, an explicit expression
for average H2 performance for an uncertainty interval also has been presented.
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