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Abstract  

From the system recoverable point of view, this pa- 
per discusses robust reconfigurable control synthesis for 
LTI systems and a class of nonlinear control systems 
with parametric and additive faults as well as deriva- 
tions generated by FDI algorithms. By following the 
model-matching strategy, an augmented optimal con- 
trol problem is constructed based on the considered 
faulty and fictitious nominal systems, such that the 
robust control design techniques, such as H, control 
and p synthesis, can be employed for the reconfigurable 
control design. 

1 Introduction 

The objective of Control Reconfiguration (CR) in the 
active fault tolerant control [6] is to recover the faulty 
system's performance/functionality to its nominal level 
by employing proper control techniques. With respect 
to different design strategies, the CR can be divided 
into two distinct categories: requirement-oriented C R  
strategies and system-oriented C R  strategies. The first 
kind of CR strategies can be regarded as a kind of con- 
trol design procedures, i.e., when some fault(s) hap- 
pened inside the system, a new controller will be de- 
signed based on the faulty system information pro- 
vided by FDI algorithms so as so make the reconfig- 
ured closed-loop system still satisfy the requirements 
originally proposed for the nominal system. This kind 
of strategy is intuitive and convenient to apply most 
of current control design methods into CR, however, 
it depends on concrete original system requirements. 
The second kind of strategy regards the CR as a kind 
of system's property recovery [2, 3, 4, 91, i.e., the CR 
design following this kind of strategy does not consider 
concrete system requirements, alternatively, the whole 
design is based on the inherent information of nominal 
and faulty systems so as to make these systems consis- 
tent in some proper senses. Due to the benefit of the 
essential dynamic/functionality recovery, the system- 
oriented CR strategies are causing more and more at- 
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tention in the fault tolerance research area. 

From the system engineering point of view, the 
system-oriented CR strategies fit the model- 
following/matching scheme well if we regard the 
nominal systems as the reference models [l, 2, 3, 91. 
Huang and R.F. Stengel proposed a restructurable 
control approach by using the implicit model-following 
method in [3]. Gao and P.J. Antsaklis gave a Pseudo- 
Inverse based method in [2] for a static feedback 
control redesign. Jiang discussed the acquisition of 
reconfigurable control by using eigenstructure assign- 
ment technique in [4]. Yang and M. Blanke employed 
the H, control technique to discuss the recovery 
of_ system's 1/0 functionality in [9]. However, most 
current work focused on the CR synthesis is under 
assumption that 

the faulty system information is known or provided 
by FDI algorithm precisely, and/or 

the considered faults have a parametric form, i.e., 
these faults only have the effect of derivations on 
system dynamic parameters [6]. 
Actually, these assumptions are very ad hoc from the 
practical point of view. Firstly, in many cases the fault 
information provided by FDI algorithms to the CR 
procedure can not match exactly what the CR proce- 
dure expected, due to (1) the on-line computation of 
FDI algorithms requires some converging time before 
the estimated values approach the real ones; and (2) 
the FDI algorithms implemented in practical systems 
always will be disturbed by outside disturbances and 
system uncertainties. Secondly, most current model- 
based FDI approaches can only deal with additive 
faults, i.e., these faults only have an additive effect 
on the system inputs and/or outputs. Furthermore, 
many fault phenomena in practice manifest themselves 
not only as parametric forms, but also as additive 
ones in the system mathematical models. Recently, 
J .  Stoustrup and H. Niemann proposed a FDI design 
approach for the parametric as well as additive faults 
by using a specific mixed p optimization in [8], which 
showed a possible way for integrated consideration of 
FDI and CR.procedures. 



Motivated by the work in [8,9, 71, a novel approach for 
synthesis of robust reconfigurable control for the LTI 
and a class of nonlinear control systems is proposed 
in this paper, in order to deal with abrupt parametric 
faults as well as additive faults inside the systems. Be- 
sides that, the possible estimation errors generated by 
FDI algorithms, which we refer to as FDI uncertain- 
ties, are also considered in our approach. The main 
idea of this approach is to combine the nominal and 
faulty closed-loop systems into a fictitious augmented 
control system according to the model-matching strat- 
egy [l ,  91, such that the H, control and p-synthesis 
theories can be used for analysis and synthesis of the 
robust reconfigurable controllers. . .- 

2 Problem .Formulation 

Consider a class of continuous time LTI control systems 
with plant input and/or output disturbances, where the 
plant P, and controller IC, have the forms: 

Here z p  E Rnp (2, E Rnc)  is the plant (controller) 
state vector, up E Rmp (uC E Rmc) is the plant con- 
trol (controller input) vector, y p  E RPp (yc E R'c) 
is the plant (controller) output vector. The vector 
dG[w: u:lT E Rn0+,, is the stack of plant external 
disturbance signals, which includes the process input 
noise w, E Rna, and measurement noise w, E Rn=. We 
assume lldll2 5 1 l. The plant and controller connect 
with each other into a closed-loop system through the 
relationship: 

where u,,f ( t )  represents the reference signals. Equa- 
tions (1),(2) and (3) define the nominal closed-loop con- 
trol system in the following analysis. Furthermore, the 
nominal design is assumed to be well-posed. 

When some fault(s) happened in the plant at time t f  
with t f  > to, without loss of generality, we assume that 
the plant P, changes abruptly to the following form: 

Here the vector function f ( t )A[fz( t )  fF(t) f?(t)lT 
represents all the possible additive faults in the plant 
system, where subscript a ,  i, s represent the actua- 
tor, internal dynamic and sensor components, respec- 
tively. Assume there is f k ( t )&[ fk l  ( t )  f k m ,  (t)lT with 

lFor the general case, a proper weighting function should be 
selected to make this assumption satisfied. 
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f k i  E e ,  m k  and k E {a, i, s}, and denote 
the dimension of f ( t )  as rf%ma + imi + sm,. The 
additive fault matrices F and H represent the effect of 
these additive faults to the system internal and output 
dynamics respectively. In general, a filter Wf(s) can 
be found to satisfy: 

for i = 1, 

f ( t )  M W f ( s ) f ( t ) ,  with the property: llf(t)112 < 1. 

If we include those fictitious states of the additive fault 
filter Wf(s) into the faulty system state expression, 
equation (4) describes this augmented system with 
property: llfll2 < 1. In the following, we assume the 
considered system already has this kind of property. 

Matrices A f ,  B f ,  C f  and D j  in (4) represent the faulty 
system matrices, which can be expressed as a (possi- 
bly nonlinear) dependency of a set of parameters as 

expressed in [8]: K f  AKp + h t  (61,. , 6q)Ki, where 

K represents symbol A,  B,  C, D ,  respectively. Each h: 
are polynomial or real rational functions of parameter 
61,. - +, 6,, satisfying hi(0,. - 9 ,O)  = 0, which denotes 
the nominal operation mode. Each Ki will have only 
entries with 0 or 1. 

(5) 

nk 

i=l 

In practice, there usually exists some possible estima- 
tion errors in the FDI information, which we refer to as 
FDI uncertainties. Assume these FDI uncertainties are 
also dependent on parameters 61, - - ,6,, i.e., all possi- 
ble estimated values provided by FDI algorithms for 
corresponding faulty matrices have the expression: 

for K representing A,  B, C, D ,  respectively. Here g: 
are also polynomial or real rational functions of the pa- 
rameter 8G[61,...,6q]T, which we refer to as FDI un- 
certainty functions. When g: 0 for all k E {a,  b, c, d }  
and i = l . - - , n k ,  it means that these faulty matri- 
ces mentioned in (6) are provided precisely by FDI al- 
gorithms. If the FDI mechanism is implemented by 
some "good" algorithms, these FDI uncertainty func- 
tions will have the property: 

The additive fault vector f ( t )  in equation (4) also 
needs to be provided by some FDI algorithms. As 
the discussion in (5) by using the fictitious fil- 
ters, the possible estimation errors for additive faults 
f ( t )  can be transferred into the system matrices 
A f ( 8 ) ,  B f ( 8 ) ,  C f ( 8 ) ,  D f ( 8 )  and additive fault matrices 
E(8) and F(t9), which have the similar forms as (6). 
Therefore, the faulty plant system provided by FDI es- 
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timation has the form: 

Equations (8),(2) and (3) define the faulty closed-loop 
control system with FDI uncertainties. 

In [8] a systematic modeling and synthesis proce- 
dure for the detection and isolation of these kind of 
parametric faults as well as additive faults has been 
proposed based on a mixed p optimization method. 
Here we consider the control reconfiguration problem 
based on the fault knowledge, i.e., in the following, 
we assume a set of fault system matrices, denoted as 
A f ,  Bf, C f ,  Dj, F, H as well as additive fault f ( t )  have 
already been provided by the FDI mechanism. 

Let the transfer function matrix of the nominal closed- 
loop system from [U& dTIT to yn be denoted as 3, 
and R(ICf, 0 )  be the closed-loop transfer function ma- 
trix from [U:,, dT fTIT  to y f  for the case that a fault 
has occurred and the nominal controller IC, has been 
redesigned as Kf according to the FDI information. If 
we extend the transfer function matrix 3 into matrix 
[3 O r P X r , ] ,  the latter matrix can be regarded as a trans- 
fer function matrix of the nominal closed-loop system 
from [uTef dr f T I T  to yn. Then the robust reconfig- 
urable controller synthesis problem can be defined as: 
Design a compensating system ICf by  solving the robust 
optimal problem 

under the condition that the reconfigured closed-loop 
control system is internally stable with respect to the 
uncertainty 9-term: 0 E R, where W is a weighting 
function 

In situations where the optimum of (9) does not ex- 
ist, (9) can be replaced by a corresponding suboptimal 
problem. 

and R is the uncertainty set. 

3 Synthesis of Robust Reconfigurable Control 

In this section, we discuss the robust reconfig- 
urable control synthesis by using the model-matching 
strategy[l, 91. The main idea is to combine the nominal 
and faulty closed-loop systems together into a fictitious 
augmented control system, so that the H, and /I opti- 
mization methods can be used for the control synthesis. 

21n practice, W is also needed to be designed properly with 
respect to concrete problems. 

Figure 1: The Fictitious Augmented Control System 

3.1 Synthesis without FDI Uncertainties 
We assume that the FDI system can provide precise in- 
formation, i.e., the functions gf in (6 )  all equal zero for 
any IC E {a ,  b, c, d, f ,  h)  and i = 1,. . . , nk, respectively. 
We further assume that the additive fault vector f ( t )  
already has the property3: llfllz < 1. Then equations 
(4),(2) and (3) define the faulty closed-loop control sys- 
tem before any reconfiguration. 

Now we can construct an augmented control system by 
combining the nominal closed-loop system, the faulty 
plant system (4) and a new controller, which is de- 
noted as IC. This fictitious augmented control system as 
shown in Fig.1 can be redrawn into a standard control 
system, therefore, it is obvious that the H, optimal 
problem of this standard control system is to design a 
compensator IC E R,, so as to solve the optimal (or a 
corresponding suboptimal) problem : 

under the condition that the closed-loop system is in- 
ternally stable, where F(K)  represents the transfer 
function matrix of the standard control system from 
[UTef dr f*]' to z. 

In 'order to explore the conditions under which the 
faulty system makes the optimal problem (9) reason- 
able, following the robust control theory [I, 101 we have 

Lemma 1 [l]: The optimal solution K: for the 
augmented H, optimization problem (10) exists if 
rank(2\r(jw)) and rank([l\' MGfd % f G f f ] ( j w ) )  are con- 
stant for all 0 < w < oc). Where G f d , G f f  and Gfu rep- 
resent the transfer matrices of faulty plant from input 
d, f and U to output y f ,  respectively; M ,  N ,  M ,  N are 
the components of doubly-coprime factorization of 9fU.  

-- 

-- 

Consider that the fault information provided by FDI 
system maybe has state space forms like (6 ) ,  we as- 
sume that the weighting function W has already been 
included into the plant and controller modules, and 

30therwise, the fictitious filter W f  is needed like (5). 
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the nominal closed loop system is stable and A, has 
no eigenvalue on the imaginary axis, then we have 

Lemma 2 [lo]: The optimal solution K for the H, 
optimization problem (10) exists, if 
0 The faulty system ( A f , B f , C f )  is stabilizable and 
detectable; 
0 D f  is full column rank, and [ D f  G H ]  is full row 
rank; 
0 A ,  has no eigenvalues on the imaginary axis, and 

0 [ i7 ] has full column rank; 

A f  - j w  3 E E ] has full row rank. 

Theorem 1: When the nominal closed-loop system, 
and the faulty plant (4) of the optimal I c f  synthesis 
problem (9) satisfy the conditions proposed in Lemma 
1 or 2, the solution K of the H, optimization prob- 
lem (10) is also a solution of the optimal  KC^ synthesis 
problem (9). 

Remark 1: In the H, theory [lo] the y-suboptimal 
problem is usually used for the controller synthesis in- 
stead of the optimal problem (10). If we regard y as 
a kind of quantitative evaluation of the reconfiguration 
level, the infimum y* represents the best reconfigura- 
tion level that a LTI controller can achieve with respect 
to the provided faulty system structure. 

3.2 Synthesis with FDI Uncertainties 
When the FDI uncertainties are considered, i.e., some 
functions of gf in ( 6 )  are non-zero, equations (8),(2) 
and (3) define the faulty closed-loop control system with 
FDI uncertainties before any reconfiguration. 

It can be noted that the considered FDI uncertain- 
ties (6) exhibit as a kind of parametric system un- 
certainties. In order to employ standard robust con- 
trol techniques for optimal synthesis problem (9), these 
parametric uncertainties need to be transferred into 
feedback-forms by the Linear Fractional Transforma- 
tion (LFT) [lo]. Consider the &parametric matrix 
A f ( 6 )  as shown in (8), which has the form: 

Af(0 )AAf  + C g f ( 6 1 , . . . , b q ) A i .  

Denote the term with zero order of 8 in function 
g : ( & , - - - , S , )  as g& for i = l,...,na, then with re- 
spect to the polynomial/real-rational forms of g: and 
LFT theory [lo], the parametric matrix A f ( 8 )  can be 
represented as an upper LFT form, i.e., 

n. 

i=l 

A f ( 8 )  = F u ( M ~ , A ~ ) ,  where (11) 

f 

I+% 

Figure 2: Faulty Plant with FDI Uncertainties 

AA%hUg( 61Iry , . . 6qIr; ), ' (12) 

tion g ~ ( 6 ~ , . . . , S q )  for j = l , " . , na ,  i = I,... 9 !?a 

Here rf is the highest order of parameter 6i in func- 

Denote TAA'?-? + r$ + - a .  + ?'pa, and ~ ~ ; d i m ( A f ) ,  
then the partition of the matrix M A  follows ( T A ~  + 
T A )  x ( T A ~  + T A ) .  Matrices k i f l ,  Mf2 and M& in 
(12) are determined by concrete forms of functions gp 
for i = 1," . ,n  a. Similarly, the parametric matrices 
Bf(8) ,  Cf(t9), D f ( e ) ,  F(0)  and H ( 0 )  can also be rep- 
resented as an LFT form as (11) and (12). Therefore, 
the faulty plant (8) can be expressed as the form: 

Fu(MA9 AA) 3u(MB, AB) [::I=[ Fu(MC, AC) 3u(Mg,  AD) 

L J  J 

which system structure is shown in Fig.2. 

With respect to the LFT properties [lo], equation (13) 
can be expressed in a more compacted form: 

z = F u ( M p ( ~ ) , A p ) w  (14) 

where w G [ 8  f T  uTIT and zAyf, and 

MpAFu(Mp,  : I T A ) ,  with 

N2 N3 0 N4 

AM 
EP FM BM and (15) 

CM N6 Gp HM DM N5 1 
A, ;d iag (A~,  AB, A c ,  A D ,  A F ,  A H ) ,  (16) 

here matrices N I , . . . ,  N6 in (15) are determined by 
Mf1, and M.& for IC E {a, b, c, d, f, h} ,  respectively. 

The reconfigured closed-loop control system is a feed- 
back combination of the plant (14) with a new con- 
troller I c f ,  which needs to be synthesized. If we denote 
the transfer function matrix of reconfigured closed-loop 
system from w to z as 'R(lcf,  e), it has an LFT form: 
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Figure 3: The Augmented Control System 

The new controller Ic f  in (17) should satisfy the opti- 
mal problem (9). In order to employ the robust control 
synthesis techniques to solve this problem, a fictitious 
augmented control system is constructed by combin- 
ing the nominal closed-loop system and faulty closed- 
loop system (17) together as shown in Fig.3. This aug- 
mented control system can be further redrawn into a 
standard robust control problem with system uncer- 
tainty Ap, where the state variable of the standard 
plant is [z: 2$]' and the external input variable is 
[dT fT uFeflT. Denoted this standard plant as p ( s ) ,  
then, with respect to the small gain theorem with struc- 
tured uncertainties [lo], we have: 

Theorem 2: Given a real positive scalar constant y > 
0, if there exists a real rational controller  KC^, which 
combines with the faulty plant system (8) satisfying 
~ ~ & ( ~ , ~ ~ ) ~ ~ p  < 7, then the reconfiguration error of 
1/0 functionality is bounded by: 

where ,B is the excitation level of the system, i.e., 
II["?ef dT fTITI12 = P* 
Remark 2: The robust reconfigurable controller Ic f  
can be synthesized by standard p synthesis technique, 
such as the D-K iteration and/or LMI methods. How- 
ever, it should be noted that these methods do not 
guarantee a global optimum will be found. 

4 Extension for Nonlinear Control Systems 

In this section, we extend the proposed synthesis 
method to deal with a class of continuous time non- 
linear control systems as shown in Fig.4, which was 
proposed originally in [7] for FDI design. here we as- 
sume there is no any system disturbance ( d ( t )  = 0) and 
FDI uncertainties '. 
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Figure 4: A Class of Nonlinear Control Systems 

4.1 Problem Description 
The considered nonlinear system as shown in Fig.4 con- 
tains two components: the upper dash-box is the non- 
linear plant, which includes two interconnecting parts: 
the linear part P(s )  with inputs: up and up, and out- 
puts: zp  and y p ;  and the nonlinear part Ap. Usu- 
ally, P(s )  can be thought of as the linearization of the 
plant in some operating point. The lower dash-box is 
the nonlinear controller. According to the methods in 
[5, 71, this nonlinear controller is a combination of a 
linear part K ( s )  which is designed by the standard lin- 
ear system theory and a nonlinear part A p  which is the 
copy of the nonlinear part of the plant. 

We assume there is Ap E A = {A I A E X,, l)Alla < 
y, where y is a positive constant}. By employing the 
LFT theory [lo], we can get a compact expression of the 
system which is defined as Ip,"""~FU(Gn,An), where 

wnA[wF w:IT, zn'[z; z:]', An' [ A p  1, and 

[ ] [ Gn21 z:ii ] [ :yf 1. 
When some fault happened inside the (nonlinear) 
plant, assume which can be indicated by derivations 
of the transfer matrices Gn,j (2,  j = 1,2) and Ap re- 
spectively, then we can get the faulty nonlinear control 
system (without any reconfiguration), denote which as 
PjonlFu(Gp, Af). 

In order to deal with the nonlinear control reconfigu- 
ration problem, the robust control mixer method pro- 
posed in [9] originally for LTI systems is extended in 
the following. The basic idea of using the control mixer 
method is that: When some fault occurred inside the 
nonlinear control systems, instead of redesigning the 
nonlinear controller, some new dynamical (LTI-form) 
modules, which are referred to as control mixer mod- 
ules, will be inserted into the closed-loop system so as 
to try to recover the reconfigured system as the same 
as the nominal one in the Ha-norm sense. 

0 A, 
Grill 

4The proposed method can be extended directly to deal with 
the cases d # 0 and with FDI uncertainties. 
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Figure 5: The augmented System by Using iC1 

4.2 Synthesis of Robust Control Mixer Module 
As stated in [9], there are many possible inserting loca- 
tions for the control mixer modules, which depend on 
the concrete systems and problems. In order to show 
our method without triviality, here we just consider 
the case of using one pre-compensator - called control 
mixer module IC1 in [9] - for the nonlinear control re- 
configuration design as shown in the low part of Fig.5. 
Then, the optimal synthesis problem for module K1 can 
be formulated as: designing a compensating system IC1 

by solving the optimal (or corresponding suboptimal) 
problem 

‘ 

under the condition that the reconfigured closed-loop 
system is internally stable subject to the nonlinear 
parts An and A,. 

By following the same procedure for LTI systems 
in Section 3, a fictitious augmented nonlinear con- 
trol system can be constructed as shown in Fig. 5. 
Obviously, this augmented control system can be 
transferred into a standard robust control configura- 
tion, where the closed-loop transfer matrix from u,,f 
to z can be denoted as ~ ( K l ) ~ ~ ( F ~ ( ~ l , A l ) , K l )  

with A I S  [ $ lf 1, W~;[W: w;]~ ,  y&,,f and 

z~;[z: z7IT, and the standard plant Q1 has the form 

Gn11 0 Gn12 0 

Gf12 ] [ [ ; I = [  0 0 I 0 

0 Gfii 0 
Gn21 -Gf21 Gn22 -Gf22 

Therefore, the optimal control mixer IC1 design prob- 
lem can be replaced by a standard robust control prob- 
lem, i.e., min11F - FfKlllco = ~ ~ ~ [ R ( K ~ ) ~ ~ m ,  under 

the condition that the closed-loop system is internally 
stable subject to the structured system uncertainty Al .  

Ki 

new uncertainty part AI in the augmented control sys- 
tem. For the consideration of additive faults f and/or 
system disturbance d, the system transfer function ma- 
trices 3 and R(K1) need to be extended as those from 
[UTef dT f T I T  to yp/yf as we did in Section 2 (9). 

5 Conclusions 

A novel approach for synthesis of robust reconfigurable 
control for LTI systems and a class of nonlinear con- 
trol systems with parametric and additive faults as well 
as uncertainties generated by FDI algorithms has been 
proposed in a unified framework. The H, control and 
p synthesis techniques can be employed efficiently for 
this control synthesis by following the model-matching 
strategy. To investigate the integration of the proposed 
CR method with the robust FDI method proposed in 
[8] for the whole fault tolerant control design will be 
the subject of our future work. 
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