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Abstract 
The problem of detecting and/or isolating faults in 
dynamical systems is assessed. In contrast to pre- 
vious approaches, the residual vector is considered 
to be a design variable as a free transfer function 
in addition to the actual filter which is supposed 
to minize the residual. Some main directions are 
suggested, and a numerical algorithm implementing 
part of these is proposed. 

1 Introduction 
A number of papers has considered the problem of 
designing residual generators by using 31, optimiza- 
tion methods, see e.g. [l, 3, 41 to mention some of 
the papers. The two main concepts in these meth- 
ods are either to use some residual generator to es- 
timate the fault signals directly, [2], or to estimate 
the output of the system and then use the differ- 
ence between the real output and the estimated as 
the residual signal, see e.g. [l]. 31, optimization 
methods are very useful in connection with robust 
control, where hard bounds are required to guaran- 
tee robust stability and robust performance. Also 
in connection with estimation, 31, design meth- 
ods are applied with advantage to  guarantee per- 
formance specifications. In contrast to the robust 
control problem and the robust estimation problem 
which the ‘H, design methods were derived for, the 
methods cannot be applied directly for an optimal 
design of residual generators for fault detection and 
fault identification as we shall argue below. 

The main result in this paper is to formulate the 
fault detection problem as a direct optimization 
problem, where e.g. an 31, optimization can be 
applied. 

2 System Setup 
Let us consider the general linear feedback system 
given by 
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where x E Rn is the state vector, f E Rk is the 
additive fault vector, d E R‘ is the external dis- 
turbance input, and y E Rm is the measurement 
output. Further, let a residual signal T be given by 
T = F y  where F is a residual generator. 

The design problem is to design a residual gener- 
ator such that we will obtain fault detection, fault 
identification or fault estimation. 

sup IlT - Vf 112 = SUP llF9 - Vfll2 < Y 
Ilwll,<l Ilwllz<l 

where V is a weighting matrix, and 
small, positive number. 

The above design problem depend strongly on the 
selection of the weight matrix V .  We get a fault de- 
tection problem for V selected as a non-zero transfer 
function of dimension 1 x I C ,  a fault isolation prob- 
lem for V selected as a non singular k x k matrix, 
static or dynamic, and a fault estimation problem 
for V = I. 

If both F and V are considered as “controllers” , 
i.e. as free parameters that need to be designed in 
an ‘H, design, the optimal solution will be F = 0 
and V = 0. It is therefore necessary to require that 
the residual generator and the weighting matrix are 
non zero. This condition cannot be included directly 
in a standard 31, design. 

3 31, optimization of V and F.  
The problem with the optimization problem asso- 
ciated with infimizing the transfer function from w 
to e ,  Tew is that no constraints are imposed by the 
condition 

is a suitably 

In fact, since V is free, V = FGf can always be 
chosen. This, in effect, means that the presence of 
f does not play a role in the optimization, and the 
optimization problem reduces to a disturbance at- 
tenuation problem. Using the above calculation of V 
in the transfer function from input w to the estima- 
tion error e gives the following closed loop transfer 
function 
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It is quite clear that the X, norm of this closed 
loop transfer function will be less than (or equal) 
to the obtained norm for the design of F.  So using 
this weight matrix V in the next design. An upper 
bound for this design is given by the the 31, norm 
of To,FG~,  because we can obtain this by using the 
same residual generator from the previous step. 

This method has also a number of drawbacks com- 
pared with the other design method. First of all, 
a scaling of either V or F need to be included to 
remove the trivial solution F = 0, V = 0. Another 
problem is the order of the derived residual gener- 
ator and also the weight matrix V .  The order will 
increase in every iteration. The increasing order of 
the residual generator F can be removed by instead 
of using a V = FGf  directly for the calculation of V ,  
a fixed order approximation of FGf can be applied. 

Based on the above description of the method, the 
following algorithm can be given. 

Algorithm 1 

1.  Fix V .  Determine F by solving an X, filter- 
ing problem 

2. Fix F .  Determine V as a fixed order approxi- 
mation of FGf 

3. Scaling of V .  

4. Iterate on the above scheme 

At last, it need to be pointed out that because the 
weight matrix V is a dynamic matrix, it will not 
necessary be optimal to apply a constant threshold. 
Instead a dynamic threshold should be applied. 

4 Examples 
The iterative design method described above is now 
illustrated on some examples. Let consider the sys- 
tem in (1) given in state space form. The design 
examples considered has 4 states, 3 measurement 
outputs, 3 fault signals and 6 disturbance input sig- 
nals. A, B f ,  C and D f  are generated as random 
matrices. The two disturbance input matrices Bd 

and Dd are given by 

Bd = [diag(0.25 0.25 0.25 0 )  04x31 

Dd = [O3x3 diag(0.25 0.25 0.25)] 

Further, the output error e in Figure 1 is in the de- 
sign setup weighted by the following weighting func- 
tion We = - such that z = Wee. 

In the design, the weighting matrix V is not selected 
directly as V = F G f ,  but V is instead selected as a 
reduced order approximation of F G f ,  such that the 
order of the fault detector is bounded. In the follow- 
ing, a first order approximation is selected. Further, 
in every iteration, the weighting matrix V is scaled 
such that the smallest gain from f to Vf is 1 at 
w = 0. 

In Figure 1, the X, norm y of the transfer function 
from input (f and d) to the weighted estimation 
error output z is shown as function of the number of 
iterations for 3 different systems. As starting point, 
V is selected as a constant matrix given by V = 
[l 3 51. 

As it is shown in Figure 1, the y value converge after 
a number of iterations for all 3 systems. 

I -1 I 

Figure 1: Iteration of the weight function for different 
random systems. 
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