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ABSTRACT 

We present a numerically stable and computational simple 
method for fast and robust measurement of optical channel 
gain. By transmitting adaptively designed signals through the 
channel, good accuracy is possible even in severe noise condi- 
tions. 

1. INTRODUCTION 

The measuring of optical channel gains is a key element in 
many applications. Measuring channel gains means determin- 
ing the change in intensity when a signal is transmitted from 
an emitter to a receiver. A well-known and simple applica- 
tion is an automatic door, which responds whenever a person 
is reflecting the emitted signal, and thereby significantly in- 
creasing the channel gain. Another example is measuring the 
thickness of paper. A more subtle example is determination 
of spatial position by comparing the intensities of a multitude 
of reflections from a single object. A typical way of making 
this type of measurements is emitting a simple signal, such as 
a harmonic or square wave signal, since they are both easily 
constructed and measured with analog electronics. Such solu- 
tions have two major disadvantages: The signals are sensitive 
to frequency located disturbances, and it is difficult to detect 
and avoidneutralize such disturbances. 

We propose a measuring method which is highly accurate 
in moderate noise conditions, and less accurate, but very ro- 
bust, in severe noise conditions. This is achieved by using 
two closely related digital signal design algorithms; a “best 
case” and a “worst case” algorithm. The former is based on 
the wavelet transform (WT), while the latter is based on the 
Rudin-Shapiro transform (RST). They are both simple, numer- 
ically stable, and post-processing Friendly making them ideal 
for implementation e.g. in a fixed point DSP. By introducing a 
signal processor it becomes possible to continuously redesign 
the signals for improved SNR, and thereby maintaining the ac- 
curacy in changing andor severe noise conditions. 

2. DESIGNING THE DIGITAL SIGNALS 

The two design algorithms are based on the wavelet packet 
transform scheme; it is fast, numerically stable, works well 
in fixed point arithmetics, and has low program complexity. 
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The best case algorithm uses the classical WT to create sig- 
nals which are near-orthogonal to expected noise occurrences, 
while the other algorithm uses the RST to create an all-spectrum 
signal, which by nature has low sensitivity with respect to time 
and frequency located noise occurrences. The difference is 
essentially that the WT algorithm “searches for holes” in the 
current noise, while the RST algorithm spreads information in 
time and frequency to reduce the impact o f  localized distur- 
bances. The prefered method depends on the noise conditions. 
If there are easy-to-find holes in the noise, the former can pro- 
vide very accurate measurements. If, however, the noise is dif- 
ficult to define or is changing rapidly, the latter method pro- 
vides lesser accurate, but more robust measurements. 

A good introduction to the wavelet theory is Wickerhauser 
[6 ] .  A mathematically rigorous treatment of the subject is given 
in Daubechies [3]. For more material on Rudin-Shapiro poly- 
nomials see Brillhart [ I ]  

2.1. The wavelet transform 

The WT based algorithm takes a simple, time localized sig- 
nal (see figure 1 for an example), and inversely wavelet packet 
transform it, which results in a frequency localized signal. A 
typical maximum spread is also shown in figure 1. After trans- 
mission the signal is forwardly transformed to reproduce the 
original, now noisy simple signal, and by inner product with 
the “clean” original signal the transmission intensity (the chan- 
nel gain) is determined. Since the original signal is completely 
known, it is also possible to obtain an estimated accuracy of 
the channel gain measurement. This is accomplished by taking 
inner product between the transmitted, transformed signal and 
a number of signals orthogonal to the original signal. If these 
quantities are small the transmission was most likely subject to 
only mild noise. This trick provides an easily calculated guide- 
line to how much one can trust the current measurement. If 
each measurement is vital a number of signal restoration pro- 
cedures (not further described here) can be applied. These also 
benefit from the complete knowledge of the original signal. 
Note that the small number of non-vanishing coefficients of 
the original signal in all cases significantly reduce the amount 
of calculations. 

Because the transform is linear and has perfect reconstruc- 
tion, it is also easy to make a good sample by sample estimation 
of the noise, which provides valuable information on any dis- 
turbances. This makes it possible to do real time adaptation 
of the signal. The mehtods combines the ability of the WT 
to produce predefined trade-offs between time and frequency 
information with the freedom in design of the original signal. 
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Figure 1: Uppennost a simple signal (lime a sampled chirp). 
Below (in solid) the absolute value of the Fourier t~a~isfonn 
of' the 3-scde inverse wavelel pdckel transform with symlcts 
6 [4]. The dashed curve shows the nnximal frequency spread- 
ing for any (suitably normalized) signal with coefficients van- 
ishing outside [128: 1591. 

Thereby it is possible to adapt the indhod to virtually any type 
of noise, in particular dishirbauces with large teniporal extent. 

2.2. The Rudin-Shapiro transform 

The RST is delincd through a slightly extended version of' the 
remarkable Rudin-Shapiro polynomials, introduced in I951 by 
11. S. Shapim in his master's thesis, and published in 1959 by 
Rudin [5].  Define the polynimals 

Pm+l(%) = P&) + (-l)%2"Qm(%)$ Pi = 1 
Qo = 1 

nr (1) 
Qm+l(:) = P,(z) - (-1J6'''z2 Q ~ ( x ) ,  

with 6. E (0,l }. It immediate follows that for ell 1.I = 1 

IPm+ll' + IQm+, I" = 21Pm12 + 21QmI3 = F2. 
Consequently, 

mnxIP.(o'~)I e 5 fi]lp,,,(2fjj12, (2) 

giaranteeing a certain flatness of the polynomials. A constnic- 
tion similar to (1) is found hi Byines 121. The coefficients 
of the polynomials cm also be constructed with the Rudin- 
Shapiro tmnsform, which is really a modified wavelet packet 
Haar transform. D e h e  the unitmy transform Hn : R2" I+ 
B'", n 2 I, as 

e r k  = 0, ... ,2"-' - 1. when mapping x to y. Then, with 
Hn being the inverse of H,, 

a x .  uans l 'ms  the canonical basis for R mto the coefficients of 
the 2N possible P&)'s. Hence these coefficients constitutes 
an orthononnal basis, which not only consists of only fl, but 
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Figure 2: Uppermost is the result of applying the inverse 
Rudin-Shapiro transfoml to the 29th canonical basis vector of 
length64. Belo-, the fiequencyresponse (the absolutevalue of 
the wrresponding Pe(eic) polynomial). 

also, due to (2), has a remarkable frequency response. In fig- 
ure 2 is an example of such a basis element and its frequency 
response. The RST based algorithm is applied in much the 
same way as the WT niethod. A simple signal is inversely 
transformed prior to lransmission. This will produce an all- 
specmini signal. Upon transmission the signal is forwardly 
transformed yielding the original, simple signal with noise. 
The post-processing is equivalent to that of the WT method 

3. CONCLITSION 

Two computationally siniple andnunierically robust algorithms 
for measuring optical channel gains were presentd. One of 
thc algorithms providcs excellent accuracy in moderate noise 
conditions, while the other has reduced, but very robust, ac- 
curacy even in severe noise conditions. Combining the two 
algoiitlims, either by applying the most suitable one, or jointly 
in two panllel systems, is easy due to their similar progan 
and computational structm, and the result is a versatile op- 
tical channel gain method. The low complcxity and numer- 
ical stability of the wavelet packet transform scheme and of 
the post-processing (mainly inner products) also makes this ap- 
proach fasl and suitable for low cost hardware impleincntation. 
For the commercial aspects of these methods, please refcr to 
www.beamcontrol.com. 
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