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ABSTRACT
The infra red 3D mouse is a three dimensional input device to a computer. It works by determining the position of an
arbitrary object (like a hand) by emitting infra red signals from a number of locations and measuring the reflected intensities.
To maximize stability, robustness, and use of bandwidth, the signals are designed by means of the wavelet and the Rudin-
Shapiro transforms. This also allows for easy separation of simultaneously made measurements. The measured intensities
are converted to an 3D position by a neural net. The principle also applies to other applications, for instance a hand in front
of monitor. We are currently constructing a prototype to test the potential of this idea.
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1. Introduction

The possibility of fast, robust, and inexpensive determination of
the three dimensional position of a passive object is an interesting
challenge, both industrially and scientifically. In contrast to a sys-
tem performing 3D positioning of active objects, (such systems
are well-known and widely used; one of many examples is GPS),
a system for positioning of passive objects usually has to rely on
signals which are emitted in the direction of and reflected by the
object rather than signals emitted by the object itself. The natural
consequences of this is that there is a relative large difference in
the intensity of the emitted signal and the reflected, received sig-
nal. For the system to be both robust and efficient it is therefore
vital to exploit its single, major advantage: The complete control
and knowledge of the emitted signal.

To test a new idea for an inexpensive and robust 3D position-
ing system we are constructing an infra red 3D computer mouse.
Many other positioning systems could be used as a test bench, but
we have chosen the 3D mouse because it is cheap and relatively
easy to build, has suitable real time requirements, is of some com-
mercial interest, and it has “laboratory-friendly” dimensions. The
idea is to emit a whole range of signals from various position and
measure the reflected intensities. The relations between the inten-
sities is then converted into a 3D position. The signals are infra
red (IR) light, and the IR emitters and receivers are located in a
box with dimensions equivalent to a thick ordinary mouse pad.
An object, like a hand, can then be positioned when it is over the
mouse pad. The physical design and basic principle of the 3D
mouse is shown inFig. 1.

The calculation of the 3D position of an object is divided into
two consecutive steps. The first step is determining the relative
distances by measuring the intensity of infra red light emitted in
the direction of and reflected by the object. The second step is
converting the high dimensional measurement data into a three
dimensional position. We have developed and tested an accurate
and robust method that carries out the first step. This is described
in the next section, and constitutes the main part of this presen-
tation. To perform the second step we propose to use a neural
network, possibly with wavelets functions as neurons. The rela-
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Figure 1: The physical design and basic principle of the 3D
mouse. A number of infra red emitters (circles) and receivers
(squares) are located in the 3D mouse under the IR transparent
top cover. All necessary electronics are also located inside the
3D mouse.

tive distances are highly non-linear, and preliminary simulations
have indicated that a neural network with conventional functions
might not suffice. The results so far is described inSec. 3.

2. Measuring the Relative Distances

The first step of the determination of the 3D position is measuring
a number of relative distances between the object and an array of
emitter and receivers located in the 3D mouse. As described, this
is done by measuring the reflected intensities of emitted signals,
and the challenge eventually comes down to creating an algorithm
which can adaptively design these signals to be optimal under
given conditions.

In an ideal theoretical scenario there are four unknown vari-
ables; the 3D position and the reflectivity of the object, and hence
only four distances are required. But in a real application all mea-
surements are subject to uncertainty, and the reflectivity might
not be homogeneous across the object. The consequence is that a
larger number of relative distances are required, which inevitably
increases the computational complexity. At the same time the
real time requirement – combined with the desire to use only in-
expensive hardware – limits the available computational power.

We present in this section a measuring method that is well



suited for accommodating these opposing interest by

• exploiting the full potential of any combination of emitters
and receivers,

• making all the measurements simultaneously,

• being highly accurate in moderate noise conditions,

• being very robust in severe noise conditions,

• being suitable for fixed point DSP implementation.

This is achieved by using two closely related digital signal de-
sign algorithms; a “best case” and a “worst case” algorithm. The
former is based on the wavelet transform (WT), while the latter
is based on the Rudin-Shapiro transform (RST). They are both
simple, numerically stable, and post-processing friendly, making
them ideal for implementation in a fixed point DSP or a custom
IC. By introducing a signal processor it becomes possible to con-
tinuously redesign the signals for improved SNR, and thereby in-
creasing the potential for accuracy and robustness in changing
and/or severe noise conditions.

Due to space limitations, we will not describe the popular
WT in further detail. The RST is briefly presented inSec. 2.3.

2.1. Designing the Digital Signals

The two design algorithms are based on the wavelet packet trans-
form scheme; it is fast, numerically stable, works well in fixed
point arithmetic, and has low program complexity. The best case
algorithm uses the classical WT to create signals which are near-
orthogonal to expected noise occurrences, while the other algo-
rithm uses the RST to create an all-spectrum signal, which by
nature has low sensitivity with respect to time and frequency lo-
cated noise occurrences. The difference is essentially that the
WT algorithm “searches for holes” in the current noise, while the
RST algorithm spreads information in time and frequency to re-
duce the impact of localized disturbances. The preferred method
depends on the noise conditions. If there are easy-to-find holes in
the noise, the former can provide very accurate measurements. If,
however, the noise is difficult to define or is changing rapidly, the
latter method provides less accurate, but more robust measure-
ments.

A good introduction to the wavelet theory from an applica-
tional point of view is Wickerhauser [7]. A mathematically rig-
orous treatment of the subject is given in Daubechies [5]. For
more material on Rudin-Shapiro polynomials, see Brillhart [2]
and Benke [1].

2.2. The Wavelet Transform Design Method

The idea for designing a good transmission signal is the follow-
ing. A designed, simple, and time localized signal is inversely
wavelet packet transformed. Time localized means that in an oth-
erwise vanishing sampled signal, there are a number of consecu-
tive non-vanishing samples. Since these non-vanishing samples
has an interpretation as coefficients of various time-frequency
atoms, it is possible, by coordinating the design of the signal with
the wavelet basis chosen for the inverse transformation, to create
a signal with particular time and frequency properties.

After transmission the signal is forwardly transformed to re-
produce the original, now noisy simple signal, and by inner prod-
uct with the “clean” original signal the transmission intensity is
determined. Since the original signal is completely known, it is
also possible to obtain an estimated accuracy of the channel gain
measurement. This is accomplished by taking inner product be-
tween the transmitted, transformed signal and a number of signals
orthogonal to the original signal. If these quantities are small the
transmission was most likely subject to only mild noise. This
trick provides an easily calculated guideline to how much one can

trust the current measurement. It is also possible to apply a num-
ber of signal restoration procedures (not further described here).
These also benefit from the complete knowledge of the original
signal. Note that the small number of non-vanishing coefficients
of the original signal in all cases significantly reduce the amount
of calculations.

Because the transform is linear and has perfect reconstruc-
tion, it is also easy to make a good sample by sample estimation
of the noise, which provides valuable information on any distur-
bances. This makes it possible to do real time adaptation of the
signal by redesigning them. The methods combines the ability of
the WT to produce predefined trade-offs between time and fre-
quency information with the freedom in design of the original
signal. Thereby it is possible to adapt the method to many types
of noise.

2.3. The Rudin-Shapiro Transform Design Method

The RST defined in this presentation is closely related to the re-
markable Rudin-Shapiro polynomials, which were discovered in
1951 by Harold Shapiro and published in 1959 by Rudin [6].
Some of the desirable properties of the RST are inherited from
these polynomials. The RS polynomials are defined as

Pm+1(z) = Pm(z) + (−1)δmz2mQm(z), P0 = 1

Qm+1(z) = Pm(z)− (−1)δmz2mQm(z), Q0 = 1
(1)

with δm ∈ {0, 1}. It immediate follows that for all|z| = 1

|Pm+1|2 + |Qm+1|2 = 2|Pm|2 + 2|Qm|2 = 2m+2.

Consequently,

max
ξ
|Pm(eiξ)| ≤

√
2‖Pm(ei2π·)‖2, (2)

which is the single, most attractive feature of these polynomials;
with (2) a certain flatness of the polynomials is guaranteed. A
construction similar to (1) is found in Byrnes [3]. The flatness
of the Rudin-Shapiro polynomials means that their coefficients
constitute time series with a broad frequency content.

To produce such wide spectrum series we use the RST, which
is really a wavelet packet Haar transform with time and frequency
depended impulse response. The RST has a number of nice prop-
erties, summarized in the following theorem, which also defines
the RST itself.

Theorem 1 (The Rudin-Shapiro Transform)
Define the mapping Hj,m : R2j 7→ R

2j , j ≥ 1, as[
yk

yk+2j−1

]
=

(−1)mk√
2

[
1 (−1)k

(−1)m −(−1)k+m

] [
x2k

x2k+1

]
(3)

for k = 0, . . . , 2j−1 − 1 when mapping x to y. Define the
Rudin-Shapiro transform as

HJ
def
=

J∏
j=1


Hj,0 0

. . .

0 Hj,2J−j−1

 (4)

Then HJ = [hm,n] : R2J 7→ R
2J is a unitary and symmetric

Hadamard matrix with

hm,n = 2−J/2
J∏
j=1

(−1)(mj+nJ−j+2)(mj+1+nJ−j+1), (5)

for m,n < 2J , where mj is the j’th bit in the binary representa-
tion of m, with m1 LSB. Moreover,

max
ξ

∣∣∣2J−1∑
m=0

hm,ne
i2πmξ

∣∣∣ ≤ √2, n = 0, . . . , 2J − 1. (6)
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Figure 2: The top graph shows the37th basis vector of a size
64 Rudin-Shapiro transform. Below is the amplitude of the fre-
quency response of the basis vector.

Note thatHJ is unitary becauseHj,m is unitary, that (6) is equiv-
alent to (2), and that it follows from (5) thatHJ is a symmetric
Hadamard matrix. We omit the complete proof, which will ap-
pear later in the ph.d. thesis of the first author.

The theorem shows that the RST constitutes an orthonormal
basis, which not only consists of uniformly scaled±1, but also,
due to (6), has a remarkable frequency response. InFig. 2 is an
example of such a basis element and its frequency response.

The brute force procedure for decomposing a vector in the
RST basis is to multiply it with the inverse ofHJ . However, the
theorem shows that, not only isHJ its own inverse, there is also a
wavelet packet like scheme, given by (3) and (4), which performs
the matrix multiplication with complexityO(J log J). Note that
if the 2× 2 matrix in (3) was replaced by the first of[

1 1
1 −1

]
,

[
1 (−1)k

1 −(−1)k

]
,

thenHJ would be the all-scale wavelet packet Haar transform.
If replaced by the second matrix, the rows ofHJ would be the
coefficients of the Rudin-Shapiro polynomials defined in (1). Of
these only the Haar transform is symmetric.

The RST based algorithm is applied in much the same way as
the WT method. A designed, simple signal is transformed prior to
transmission, yielding an all-spectrum signal. Upon transmission
the signal is transformed again, this time producing the original,
simple signal with noise. The post-processing is equivalent to
that of the WT method.

3. Determining the 3D Position

The second step of the 3D positioning is converting the relative
distances into a 3D position by means of some mapping from a
high dimensional space toR3. This mapping defines the inter-
pretation of any quality of measurement; perfect, good, bad, as
well as completely wrong, and must do so in a very short time
due to the real time requirement. The mapping should fulfill the
following prioritized requirements:

1. It works well for good measurements,

2. there is a reasonable relation between error in measure-
ments and error in 3D position,

3. it has low computational complexity,

4. it has low dynamic range in computations,

5. it is easily adaptable in real time,

Since the measurements are expected to be good most of the time,
the primary concern is that the mapping does well in this case,
and the second requirement ensures that a small decrease in ac-
curacy does not result in too large deviations in the 3D position.

0 50 100 150 200 250 0 10 20 30 40 50

Figure 3: The simulated reflection intensities. The triangle is the
emitter, and the square the receiver. The first two columns have
the same color scale, and so does the last two. The axes limits are
the same as in the other figures.

3.1. The Properties of the Neural Net

There are various ways of constructing this mapping ranging from
completely theoretical, geometrical consideration to purely ad
hoc methods. We have chosen a middle-road approach by using
a neural net. On the one hand this offers a systematic and fairly
well-described way of defining and describing the desired map-
ping, and at the other hand requires a lot of guessing and testing.
Moreover, a neural net has the potential of fulfilling the above
requirements, as is shown in the following.

In this particular framework there are two ways of using a
neural net; as a classifier and as a function approximation. The
former is useful if only one of a few possible positions are needed
instead of the actual position. This applies, for instance, when
pointing at icons on a monitor. In this presentation only the func-
tion approximation network is investigated, being the most inter-
esting type in the case of the 3D mouse.

We have chosen to use a radial basis function network, be-
cause it is well-suited for function approximation, plus it requires
only a relatively limited amount of training. For a more detailed
description on radial basis function network, see Chen et. al [4].

3.2. Simulating the 3D Positioning

To simulate the 3D positioning by a neural net it is necessary with
measurement data from an array of emitters and receivers. Ac-
quiring almost error-free data by means of a real electronic setup
is difficult; it requires extensive work and expensive equipment.
So, instead a model is used to produce the measurements. This is
a rather complex and computationally heavy model, which simu-
lates the reflection of a sphere at any given position by means of a
ray-tracing like procedure. We have chosen to present a 2D sim-
ulation, since this is much more suited for visual interpretation
(plus it is significantly less computationally complex).

The setup consists of4 emitters and3 receivers located along
a line (equivalent to location in a plane in the 3D mouse). The
simulated measurements are shown inFig. 3 along with the lo-
cation of the emitters and receivers. Note that the overall inten-
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Figure 4: The error in distance (Euclidean norm) between true 2D
positions and 2D positions simulated by a neural net. The crosses
mark the training points. The left set of training points yielded82
neurons, while the right gave57 neurons. The color scale islog2.

sity depends heavily on the distance between emitter and receiver.
The size of each measurement set is16×20 units (which might be
interpreted as centimeters). The idea is now to use a neural net to
map the12 dimensional measurements to a 3D position. The net-
work is constructed by repeatedly adding neurons (which in this
case are functions on the formAe−t

2
) until the MSE between the

true and simulated 2D position in a set of training points is below
a threshold. While this procedure specifically reduces the error
in certain points, the goal is to have a good approximation in all
2D points. The former does not necessarily imply the latter, as is
shown inFig. 4. Here two sets of training points are used, and
the MSE of all the training points are0.3. In between the training
points, however, there is no control of the the error, which can
easily become quite large. But adding training points in places
with large error will inevitably also increase the number of neu-
rons (to meet the MSE threshold requirement). One obvious goal
is to have as few neurons as possible, but it is equally important
that the neural net is not too sensitive to noise. To test this (on the
neural net with82 neurons) the net has predicted the 2D position
based on12 dimensional measurement data with added Gaussian
noise. This is shown inFig. 5. Since the added noise have the
same variance all over the16×20 plane, while the measurements
are varying in amplitude (as seen inFig. 3), the SNR varies some-
what. Although the weaker noise is typical for laboratory tests,
the stronger noise is not uncommon. This figure shows one major
weakness of the neural net; the large sensitivity to even Gaussian
noise (the scale islog2, so the predicted positions are useless).

The problem is that although the ‘clean’ measurements are12
dimensional, they constitute a3 dimensional submanifold since
they are originally mapped fromR3. If a 12 dimensional mea-
surement is too far from this embedded submanifold the predic-
tion made by the neural net becomes arbitrary and hence useless.
We have two potential solutions to this; the neural net could be
trained for erroneous data as well, or some projection onto the 3D
submanifold could be applied in the12 dimensional data space.
We have tested the former idea with positive result, but a signif-
icantly larger number of neurons is needed, since an even more
complicated structure than the 3D submanifold is approximated.
The latter solution is somewhat more complicated, because it re-
quires a fine-gridded non-Euclidean multi dimensional structure
(consisting of splines, for instance) of the 3D submanifold in or-
der to facilitate computation of a numerical projection, as an ana-
lytical projection is not feasible. We have not yet tested this idea.

4. Conclusion

We have proposed to construct a 3D positioning system by com-
bining a computational simple and robust algorithm for measur-
ing relative distances with a neural network. The former is based
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Figure 5: The mean and maximum distance error for 200 in-
stances of Gaussian noise (SNR range from 50 to 25 dB in the
uppermost row, and 30 to 5 dB in the lower row). The color scale
is log2.

on the wavelet and the Rudin-Shapiro transforms, which are well
suited for moderate and severe noise conditions, respectively. They
both have low program and computational complexities in ad-
dition to good numerical properties, making them suitable for
low cost hardware implementation. The neural network presents
some difficulties, and some work still remains to be done in this
context. One untested possibility is using wavelets as basis func-
tion in the neural net; we expect this to reduce the number of
neurons because of the greater flexibility of wavelets compared
to Gaussian functions. However, the preliminary simulations in-
dicate that this method for converting relative distances into 3D
positions has significant potentials.

For the commercial aspects of these methods, please refer to
www.beamcontrol.com .
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