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ABSTRACT

The performance of sensitive equipment such as mi-
crogravity experiments or accurately targeted opti-
cal instruments can be seriously degraded by vibra-
tions produced by other equipment mounted on the
same supporting structure, eg a spacecraft. Also it
is well known that active control must be used in
order to suppress the e�ects of low amplitude vibra-
tions in the range up to 1 KHz which are termed
microvibrations. In this paper we describe a sys-
tematic technique for modeling the dynamics of a
generic structure subject to microvibrations. This
produces a �nite dimensional approximate model in
linear state space form which is then used to compare
the performance of linear quadratic optimal control
algorithms in this general area.
Keywords: microvibrations, active control.

1 INTRODUCTION

Sensitive equipment often has to be mounted on
structures where vibrations induced by the function-
ing of other necessary pieces of equipment mounted
on the same underlying structure can produce unac-
ceptably high degradation of performance. This sit-
uation is very common onboard spacecraft [1], where,
for example, microrgravity experiments or accurately
targeted optical instruments are frequently mounted
on panels where reaction wheels, crycoolers, etc act
as vibration source(s).

In practice, the reduction of the vibration level by
passive means (termed passive control) in a struc-
ture can be attempted by action at the source(s),
receiver(s), and along the vibration path(s). At the
source(s), this action consists of attempting to min-
imize the amplitude(s) of the vibration(s) by, for
example, placing equipment on appropriate mount-
ings. The same approach is very often used at the
receiver(s) but with the basic objective of sensitiv-
ity reduction. Finally, along the vibration path(s),
modi�cations of structural elements or re-location
of equipment is attempted with the aim of reduc-
ing the mechanical couplings between source(s) and

receiver(s).

All of the above approaches are based on so-called
passive damping technology and, for routine appli-
cations, an appropriate combination of them is of-
ten capable of producing the desired levels of dy-
namic disturbance rejection. The use of active con-
trol schemes in such cases would only be as a last
resort to achieve desired performance. In the case
of microvibrations, taken to be low amplitude vibra-
tions which occur at frequencies in the range up to
1 KHz; only active control can be expected to pro-
vide the required level of vibration suppression.

To investigate the use of active control to suppress
microvibrations in a structure, computationally fea-
sible models which retain the core features of the
underlying dynamics are clearly required. The most
obvious approach to the development of such mod-
els is to use �nite element methods (FEM) (see, for
example, the discussion of this point in [1]) due to
the accuracy available with a su�ciently �ne mesh.
The only di�culties with such an approach are the
computational intensity of the models and the fact
that they are not in a form compatible with feed-
back control systems design. They can, however, be
used, as here, to verify that an alternative modeling
strategy produces realistic model on which to base
controller design and evaluation.

Alternatives to FEM can be classi�ed as elastic wave
methods, variational methods, and impedance based
methods respectively. A detailed study of the ad-
vantages and disadvantages of these methods, to-
gether with background on each of them, can again
be found in [1]. Based on this study, a Lagrange-
Rayleigh-Ritz (LRR) method whose development is
detailed in [1, 2, 3] is used to produce the mathemat-
ical models for the controller design studies reported
in this paper.

These studies take the form of a comparative inves-
tigation into the performance of controllers based
on linear quadratic optimal control theory applied
to equipment mounted on a panel which is known
to be a realistic basis to undertake initial studies of
this kind. The actuators and sensors used are of the
piezoelectric variety which are currently the subject



of much interest for control systems implementation
in many di�erent applications domains. In the next
section we summarize the required background with
complete details in [1, 2, 3].

2 MODELING

Modeling equipment mounted on a panel is most
easily undertaken by assuming lumped masses. If,
however, the equipment itself has dynamics then the
lumped mass approximation is no longer valid and
a more detailed representation of the mounting ge-
ometry needs to be considered. In which case, �rst
note that each particular piece of equipment could
have a di�erent mechanical interface securing it to
the structure underneath. By far the most common
mounting geometry is four feet positioned at its cor-
ners as illustrated in Figure 1. The mounting feet,
in the form of piezoelectric patches, are the actu-
ators for control at a source or at a receiver, and
piezoelectric patches bonded onto the panel are the
sensors/actuators for control along the structure.

The model of the complete plant (or process) here
is constructed by assembling together the model of
the actively controlled panel and the model of the
equipment on their suspension systems. In this case,
the sub-system models (the panel and the equipment
on their suspension systems) are both derived using
Lagrange's equations of motion, i.e.
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where T and U respectively denote the total kinetic
and potential energy in the system respectively, qi
is the ith generalized co-ordinate, and Qi is the ith
generalized force. Hence the task now is to �nd ex-
pressions for the kinetic and potential energies of
each sub-system.

Consider �rst the panel and let the subscript pl re-
fer to the panel and pz to the piezoelectric patches.
Then we have that

T = Tpl + Tpz

U = Upl + Upz (2)

Also the displacement �eld (out-of-plane displace-
ment w) is described as a superposition of shape
functions Sm;n (consisting of the modes of the bare
panel), multiplied by  m;n(t) which denotes time de-
pendent modal co-ordinates, i.e.

w(x; y; t) =

NmX
m=1

NnX
n=1

Sm;n(x; y) m;n(t)

= sT	 (3)

where s is the vector of shape functions and 	 is the
vector of modal co-ordinates.

In the application of Lagrange's equations here, the
full set of generalized co-ordinates qi is composed of
	 and the voltages at the piezoelectric patches. The
excitation considered (in its most general form) is
modeled as Nf point forces Fj acting at arbitrary
locations on the panel. Hence the generalized forces
in (1) will have the form

Qi =

NfX
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Fj
@ w

@ fi
(4)

or Q = Sff where f is the vector of forces and Sf is
a matrix containing the modal shape vector s eval-
uated at the force locations.

The kinetic energy terms which form T of (1) can be
calculated directly by integration using the standard
formula

T =
1

2
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where � is the material density. This yields (see [1]
for the details)
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where Mpl is the (diagonal) inertia matrix of the

bare panel and Mpz is the (fully populated) iner-
tia matrix de�ned, in e�ect, by evaluating (5) over
the total number of patches used. The o�-diagonal
terms in this last matrix represent the coupling be-
tween the modal co-ordinates.

The potential energy of the panel is obtained by eval-
uating the integral

U =
1

2

Z Z Z
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where � and � are the strain and stress vectors re-
spectively. By assuming a plane stress condition for
the panel we can write (7) in the form

Upl =
1

2
	TKpl	 (8)

where Kpl is the so-called sti�ness matrix.

In the case of the piezoelectric patches, their po-
tential energy can be expressed as the sum of three
components

Upz = Uelastpz + Uelastelectpz + Uelectpz (9)

where
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and v is the column vector of voltages at the piezo-
electric patches. As before the matrices in (10) can
be computed using known formulas [1].

Given these terms, suppose some of the patches are
employed as actuators and the rest as sensors, let va
and vs be the corresponding voltage vectors, and let

Kelastelect
pza and Kelastelect

pzs denote the correspond-

ing partitions of the matrix Kelastelect
pz : Then appli-

cation of (1) yields the following model for 	

Macp �	 + Cacp _	 +Kacp	 = H (11)

where damping has been introduced via the matrix
Cacp; and

H = Vava + Sff (12)

Also
vs = H1	 (13)

The matrices in (11)-(13) are not detailed here for
brevity but, see [1, 2, 3] for the details, can be di-
rectly computed from the panel dimensions and prop-
erties and the energy terms.

The above procedure can be extended to model the
dynamics of the pieces of equipment mounted on the
panel (as illustrated in Figure 1). Each enclosure
here is assumed to have three degrees of freedom
(dof's), i.e. out-of-plane displacement, pitch angle,
and roll angle respectively which are written in vec-
tor form as 	eqp: This particular choice of dof's al-
lows us to express the kinetic energy associated with
any piece of equipment as

Teqp =
1

2
_	T
eqpMeqp _	eqp (14)

where Meqp is the associated inertia matrix.

The potential energy associated with the equipment
is, in e�ect, the sum of that stored in the exible
supporting elements. This energy can be evaluated
as the sum of the elastic energy, the elastoelectric en-
ergy and the electric energy stored in each mounting
foot. Next we outline the development of a represen-
tation for each of these energies with full details in
[3].

The elastic energy stored in each suspension, which
consists of a sti�ness, dashpot and piezoelectric prism
connected in parallel, is proportional to the square
of the linear deformation �zi; 1 � i � 4; of the ith
mounting foot and this deformation is given by the
di�erence between the out-of-plane displacement of
the panel surface (w(x; y; t)) evaluated at the mount-
ing foot location (xi; yi) and the vertical displace-
ment (zi(t)) of the ith corner of the box. Suppose

also that 	c =
h
	T ;	T

eqp

iT
: Then the total (i.e. for

all four mounting feet) elastic energy can be written
as

Uelasteqp =
1

2
	cK

elast
eqp 	c (15)

Consider now one of the piezoelectric prisms used in
the mounting feet suspensions of height hpz with a
voltage vi applied across the electrodes on the top
and bottom faces. Then a constant electric �eld e =
vi
hpz

acting in an axial direction can be assumed in

the material which has Young's modulus Epz and
piezoelectric constant dzz : The stress produced along
the same axial direction will therefore be constant
and related to the applied voltage by the equation

�electi = Epzdzz
vi
hpz

(16)

Also the strain in the material can be assumed con-
stant and given by

�zi =
�zi
hpz

(17)

and the elastoelectric energy stored in each piezo-
electric stack used can be computed by application
of a standard formula.

Suppose now that the column vector veqp denotes
the voltages vi across the electrodes in the mounting
feet used. Then the total elastoelectric energy stored
in the equipment suspension system can be written
as

Uelastoelecteqp =
1

2
vTeqpK

elastoelect
eqp veqp (18)

Assuming a uniform electric �eld exists across the
piezoelectric prisms, the electric energy studied in
each of them is given by 1

2
Cv2i where C is the capac-

itance of the prisms. Hence the total stored electric
energy can be expressed as

Uelecteqp =
1

2
vTeqpK

elect
eqp veqp (19)

In this case, the 4 � 4 matrix involved is diagonal
with each element equal to C:

The presence of dissipative forces produced by the
dashpots in the mounting feet means that an extra
term must be added to the generalized forces in (1)
applied to this case. This extra term, denoted by
Qdp; is proportional to � _zi and can be written as

Qdp = Cdp
_	e (20)

where Cdp includes the contribution of each foot. It

is also necessary to take account of the internal dy-
namics of the pieces of equipment. This is achieved
by adding an extra dof to 	eqp with associated mass

and sti�ness added to Meqp and Kelast
eqp :

To apply (1) to obtain the �nal model of the over-
all system composed of the actively controlled panel
and, say, Ne pieces of equipment mounted on it, the



generalized co-ordinate is taken (with obvious nota-
tion on the right-hand side) to be

r =
h
	T ;	T

eqp1
; � � � ;	eqp

Ne

iT
(21)

Also introduce (again with obvious notation on the
right-hand side)

ve =
h
vTeqp

1

; � � � ; vTeqp
Ne

iT
(22)

Suppose also that all sti�ness and mass matrices as-
sociated with (i) the actively controlled panel and
the pieces of equipment, and (ii) those associated
with the actuators of the suspensions, have been aug-
mented with rows and columns of zeros to be com-
patible with the dimension of r: Then on application
of (1) the motion of actively controlled structure can
be written as

Macs�r + Cacs _r +Kacsr = H1 (23)

where
H1 = Veve + Vava + Sf (24)

These last two equations govern the motion of the ac-
tively controlled structure excited by external sources
(f),voltage inputs at the active suspensions (ve), and
the piezoelectric patches acting as actuators (va).
Once the solution r is available, the displacement at
any point on the panel can be obtained from

w =
�
sT ; 0

�
r (25)

and the displacements of the equipment enclosures
are simply the corresponding elements in r: In the
case when the vibration levels of the actively con-
trolled equipment have to be monitored, these are
easily inferred from the function dof's.

3 CONTROLLER DESIGN

For a given arrangement, the model construction of
the previous section can be implemented in MAT-
LAB to directly produce (via (24) and (25)) a state
space model of the following form on which to base
controller design

_x = Ax+B1v +B2f

vs = Cvx

wout = Cwx (26)

where, in particular, x =
�
rT _rT

�T
; v =

�
vTe v

T
a

�T
and the observed and controlled output matrices Cv

and Cw are de�ned by

Cv =
h
�(Kelect

pzs )�1Kelastelect
pzs 0

i
(27)

(where Kelect
pzs is the the partition of the matrix

Kelect
pz corresponding to the sensors) and

Cw =

2
4 sT 0
sTrc 0
sTsr 0

3
5 (28)

respectively. In this last equation, the subscripts sr
and sc denote the output vectors for the source(s)
and receiver(s) respectively (i.e. the equipment boxes
here).

This model is in the standard form for controller
design studies using any one of the standard tech-
niques. The basic problem is to design the controller
to suppress the e�ects of the disturbance vector f
on the controlled output. In this paper, we consider
linear quadratic optimal controller design - for H1
based design see [1]. Before such design studies are
undertaken, however, it is essential to verify that
the model of (26)-(28) is an adequate basis for such
studies, i.e. we must verify the model as discussed
briey next with full details in [1, 3].

Model veri�cation here is by comparing the results
produced by the model (26)-(28) with those pro-
duced by standard FEM (ANSYS code [1]). To illus-
trate this method, consider the case where the panel
is a simply supported aluminum plate of dimensions
(length, breadth, and thickness respectively in mm)
304:8� 203:2� 1:52 with 4 boxes mounted on it (for
the panel properties and the locations of the boxes
see the web site [4]). Box 1 is a passive equipment
box (eg a box of electronic components), box 2 is
a source of vibrations, and boxes 3 and 4 are re-
ceivers. Boxes 2, 3 and 4 are mounted on active sus-
pensions, and box 1 is mounted on springs. The mass
of each box is taken to be 0:5 kg equally divided be-
tween the mass of the enclosure and the mass of the
resonator, and the rotational inertia of the boxes is
10�4kg=m2: The four suspension springs are of sti�-
ness k = 106N=m and the internal resonators, which
are positioned at the center of each box to avoid cou-
pling between linear (axial) and rotational (rocking)
modes of the boxes, as have the same sti�ness value.

A key point to note here is that the FE model has ap-
proximately 3500 dofs compared to 80 for the LRR
model. Figure 2 shows a schematic view of the struc-
ture as modeled by the FEM. Comparisons of the
results (a large range of sample results are given in
[4]) obtained by the two models show that a very
good agreement between them is present with only a
slight frequency shift at high frequencies, which can
be avoided by extending the model base for model-
ing panel displacements and re�ning the mesh used
in the FE Model.

The mathematical model developed here is very ex-
ible in terms of investigating the e�ects of di�erent



input and output connections for vibration transmis-
sion reduction, eg minimization at the source(s), or
receiver(s), or along the transmitting structure. In
the work reported here we consider observer imple-
mented state feedback design to minimize a standard
linear quadratic cost function of the form

J =

Z
1

0

(wT
outQwout + vTa Rva) dt (29)

where the weighting matrices Q and R are symmet-
ric positive semi-de�nite and symmetric positive def-
inite respectively. For brevity, we do not repeat the
details of the designs here. Instead, we focus on the
interpretation of them in terms of the three strate-
gies listed above and refer the reader to the web
site [4] for complete details including the positions
of the actuator and sensor, the excitation force, and
the choice of and Q and R:

In the case of the structure investigated here, con-
trol along the transmission path, attempted using
piezoelectric patches bonded onto the panel acting
as actuators and sensors, did not give acceptable re-
sults. This is mainly due to the relatively low level
of force which can be produced by the patch used as
an actuator. In particular, the controller was only
able to slightly reduce the amplitudes of the peaks
in the frequency response corresponding to the �rst
and third modes and it was not e�ective in reducing
the response at other resonances. The reason for this
is due to the position of the actuator patches which
lie along a nodal line of most of the nodes and, in
particular, nodes 2 and 4.

The situation does not improve if the controller has
other signals available e.g. the displacements of the
receivers, which con�rms that the problem of this
con�guration lies in the position of the actuators.
Better results can be obtained when the control is
applied at the mechanical interface of the source or
receiver, as described in turn next.

A: Control at source. In this case the control sys-
tem drives (independently) the four suspensions of
the equipment enclosure which generates the vibra-
tions (source). The objective is to minimize the dis-
placements and rotations of the two receivers. The
signals available to the controller are numerous, and
the option considered here is to use the displace-
ments and rotations of the source as sensor signals.
The controller design is based on a plant model which
uses the �rst 4 by 4 modal shapes of the bare panel,
and afterwards, the performance of the controlled
structure is simulated by using a more accurate plant
model (built using a 6 by 6 modal base). Figure 3
shows the vertical displacements of a receiver (which
correspond to box 3 on the panel) with and without
control.
: Note: In both Figures 3 and 4, the continuous

line the displacement with no control action and the
dashed line is the result of applying the feedback
controller.

B: Control at receiver. The vibrations at the
sensitive equipment can be reduced by acting on
the equipment's suspensions. In this case the sig-
nals available to the control system are taken as the
displacements and rotations of the receivers, and
the controller drives the active suspensions of the
receivers in order to minimize their displacements
and rotations. The results (for the same numbers
of modal shapes and bases) are reported in Figure
4. Note that, compared with the active control at
source (Figure 3), this strategy allows a stronger re-
duction of the vibration level at the receivers loca-
tion. Also this type of controller is relatively easy
to implement because the sensors and actuators are
located very close to each other.

Note that, even if the control strategies (A and B)
presented in this paper are local, the panel plays an
important role in the overall dynamics of the plant.
The importance of a correct model of the panel in
the global model of the plant, is highlighted by the
fact that the plant may become unstable for small
changes in the panel characteristics. As an example,
the controller designed in the case A, which produces
a stable controlled plant Figure 3, becomes unstable
for a 5% change in the panel in the panel thickness.

4 CONCLUSIONS

This paper has used a Lagrange-Rayleigh-Ritz (LRR)
approach to develop state space models of the dy-
namics of an equipment loaded panel on which to un-
dertake the design of active control strategies based
on feedback control schemes. The equipment enclo-
sures have been modeled as rigid rectangular boxes
mounted on a exible panel. The enclosures have in-
ternal resonators to simulate internal dynamics and
there is provision for rigid or exible mounting ele-
ments to allow for active/passive suspensions. Piezo-
electric patches are used as sensors and actuators on
the panel and piezoelectric prisms are used for the
box suspensions. A comparison of the results ob-
tained, with those obtained by modeling the same
system with the FE method, has established the va-
lidity and e�ciency of the LRR approach to simulate
the dynamics of this type of systems. The reduced
size of this LRR model, in comparison with the FE
model, makes it particularly suitable for investiga-
tions into the active control of vibrations, since it is
able to capture the essential dynamics of the plant in
a model of manageable size. Thus the LRR approach
provides a convenient way of assessing various con-
trol algorithms and strategies.
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