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Abstract  

A control synthesis of periodic processes is addressed 
in this paper. A class of linear discrete time periodic 
systems with performance specified by the generalized 
H2 operator norm is considered. The paper proposes a 
LMI solution to this problem, the sufficient and neces- 
sary conditions for solvability of H2 suboptimal control 
are stated. An algorithm for state feedback control syn- 
thesis is provided. 

1. Introduction 

Over the past two decades the periodic control the- 
ory has gained considerable attention. Its applications 
range from biology to engineering and from chemical 
process to aerospace. A broad spectrum of results on 
periodic systems are available in the literature. The 
topics of structural properties, stability, quadratic opti- 
mal control and their relations to the periodic Lyapunov 
and Riccati equations were reported in [l], [2], [3], [4], 
[5].  An impetuous development took place after intro- 
ducing the lift operator [SI. The results known from the 
control theory of h e a r  time invariant systems became 
generalized to periodic systems, the techniques like pole 
placement [7], linear quadratic control [2], H, [8] be- 
came available for the periodic systems. Only recently 
a solution to H ,  synthesis problem for time varying, 
thereby to periodic systems, has been established in [9]. 

The contribution of this study is a Linear Matrix In- 
equality (LMI) formulation of the H2 control synthesis 
problem. An important issue considered is the causality 
of the controller. The lifted counterpart of the control 
must possess the block Toeplitz structure. The paper 
considers a periodic discrete time system which perfor- 
mance is specified by the generalized H2 operator norm 
as provided in [lo]. The sufficient and necessary con- 
ditions for solvability of a suboptimal control synthesis 
problem are formulated, and an algorithm for state feed- 
back control synthesis is developed. The result of this 
paper is a generalization of the H2 control synthesis for 
linear discrete time invariant systems [ll] and [12] to 
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periodic processes. 

The paper is organized as follows. The performance 
specification and stability issues for periodic systems are 
reviewed in Section 2. The main result of this work is 
presented in Section 3. The periodic H2 control design 
is converted to a solution of certain LMIs, the conditions 
for solvability of this problem are formulated. 

No t  at ions 

The following symbols are used throughout the paper: 

z+ 
pp x p  

W 
x 
A 
t rA 
imA 
kerA 
I 

W 

set of all positive integers and zero, 
all matrices m by p with real components, 
discrete time lift operator, 
z-transform of lift operator, 
shift operator, 
z-transform of shift operator, 
trace of A, 
image of A,  
null space of A, 
identity matrix. 

2 Periodic Systems 

2.1 Properties 
For the consistency of the presentation, the definitions 
of 12 and Hz spaces are briefly stated. The section is 
concluded with the stability lemma for periodic systems. 

Consider a discrete signal U = {u(t)}, t E Z+, where 
u(t) E Itm. The space of all sequences U such that 

llu112 U(t)TU(t) < 00, (1) 
tEZ+ 

is denoted by 12. The space l2 with the definition of the 
norm given by llull becomes a Hilbert space with the 
inner product 

(u,v) = U(t)TV(t). (2) 
tEZ+ 
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Let H 2  denote the class of functions 

u(2) = u( t ) z - t ,  
t€Z+ 

such that 

(3) 

I' u(reiT)Tu(reiT)dT, where 0 5 T < 1, (4) 27r -* 

has an upper bound independent of r .  If the definition 
of the norm in H 2  is 

then the z-transform U I+ u ( z )  is an isometric isomor- 
phism. 

The right shift operator A : H 2  + H 2  is defined as 

or in the discrete time domain, A : l 2  + 1' 
A : {u(t))  H { U ( t  - 1)). (7) 

Consider a dynamic system, a h e a r  operator s : 1' -+ 
1 2 .  The system s is N-periodic if and only if 

S A N  = ANSI (8) 

where X denotes the right shift operator in the discrete 
time domain. Notice that a time invariant operator is 
N = 1 periodic. 

In the paper a state space representation of the periodic 
system is used. The following three periodic systems are 
considered: 

0 A system of specifications used for the standard 
H2 synthesis 

where the system matrices are periodic B l ( t  + 
N )  = B l ( t )  E RsXn, B2(t + N )  = B2(t)  E Rmxn, 

C2(t)  E W n x p ,  D12(t + N )  = D l ~ ( t )  E Rmx', 
and DZi(t + N )  = Dzi ( t )  E Itsxp. 

C l ( t  + N )  = C l ( t )  E Etnxr, C2(t + N )  = 

0 A simplified input output system used for the 
analysis 

s2 : U H 2, 

x ( t  + 1) = A ( t ) x ( t )  + B z ( t ) u ( t )  
z ( t )  = C , ( t ) x ( t )  + D12(t)u(t). 

(10) 

The general results will be derived for a periodic control 
and extended by duality to estimation. 

Stability of a periodic system can be analyzed using the 
Periodic Lyapunov Lemma [2] 

Lemma 1 Consider the system s1 in Eq. (1 0) and the 
Lyapunov equation 

AQ(t) = A ( t ) T Q ( t ) A ( t )  + C ( t ) T C ( t ) .  (11) 

A(t) is stable i f  and only i f ,  for any periodic C ( t )  such 
that ( A ( t ) , C ( t ) )  is detectable there ezists a symmetric 
periodic, positive semidefinite solution Q ( t )  of (11). 

A direct conclusion from the Periodic Lyapunov Lemma 
is the following corollary, [13]. 

Corollary 1 The system s1 is  stable if and only if there 
exists a periodic, positive definite matrix Q ( t )  satisfying 

XQ(t) > A ( t ) T Q ( t ) A ( t )  V t  E {0,1, * - e  , N  - 1). (12) 

To find the steady state solution of the discrete periodic 
Lyapunov cquation (11) it is desired to find the periodic 
generator Q by solving the following discrete algebraic 
Lyapunov equation [14], one for each t E (0, ..., N - 1)  

Q(t) = @(t + N ,  t)TQ(t)@(t + N ,  t )  (13) 

+(t + N , j  + l ) T C ( j ) T C ( j ) + ( t  + N , j  + 1): 
t + N - l  

+ 
j = t  

where' ch(t, ti) is the state transition matrix at sample t 
with the initial time ti. 

2.2 Lifted s y s t e m  
This subsection introduces a lifting operator, an iso- 
metric isomorphism which transforms a linear periodic 
system to a time invariant representation. Following [6] 
the lift operator is defined 
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where pi : l 2  + l 2  is a projection operator 

pi({u(t)}) E {UNt+i} = (Ui,UN+i,UZNfi,."). (15) 

S(2 )  = 

The following property is valid for the lift operator de- 
fined in Eq. (14) 

The l i e d  system B G w5w-l is time invariant. This 
can be shown using the property (16) and 

WAN = xw. (16) 

S'X = wsw-'X = wXNsw-' = Xwsw-' = AB, (17) 

hence then the system f is 1-periodic thereby time in- 
variant. 

DN,N II - D1,l 0 ... 
D2,l 3 2 , 2  ... 

DN-1,' ... fi~-i,N-i o 
- ON,' D N , 2  ... 

... 

The z-transform of the projection operator Pi : H 2  + 
H 2  is 

P&)(y) = S(i + iVn)z-". (18) 
n€Z+ 

Notice that the sum Czi' Pi gives the identity opera- 
tor, I. Now the z-transformed lift operator W : H 2  + 
( H 2 ) N  is 

Wu(z)  = [Po PI ... PN-l]Tu(2), (19) 

w-l = Z-- 'Pi (ZN) .  (20) 

and its inverse 
N-I 

i=O 

The z-transform of the lifted system is then 3 = 
WiSW-'. This operator is linear and time invariant, 
hence can be treated as the generalization of the trans- 
fer function for periodic systems. Along these lines the 
performance will be specified for the lifted system in the 
next section. 

The explicit formula'for the lift of s2 in Eq. (10) is 

x ( t + N )  = 
+ 

Y(t) = 
y ( t +  1) = 

+ 
... 

y ( t + N - 1 )  = 
+ 

where for i # j 
A = +(t+ N , t ) ,  

Bi(t )  = @(t + N ,  t + i)B2(t + i - 1) 

Ci ( t )  = Cl( t  + N - i)+(t + N - i, t ) ,  
Di,j(t) = C l ( t + i - I ) + ( t + i  -1,t+j)B2(t+j-1) 
Di,i(t) = D i ~ ( t  + i .- 1). 

The Periodic Lyapunov Lemma stated in Subsection 2.1 
is the generalization of the well known Lyapunov 
Lemma for discrete time invariant systems. It relates 
the solution of the algebraic Lyapunov equation 

Q = ATQA + CTC, (23) 

with stability of the (A, C) detectable system. Observe 
that if the lift in Eq. (21) of the system (A(t) ,  C(t)) gives 
(A, C) then Eqs. (11) and (23) become equivalent. 

2.3 Performance Specification 
The H2 operator norm for a discrete, time invariant, 
stable, casual system R : (H2)" + ( H 2 ) p  is defined 
~ 5 1  by 

IIR112 E ( k t r / *  R(ei')B*(eiT)dT 
-7r 

or equivalently using the Parseval's relation between H2 
and 12 

where 1" : (12)" + ( 1 2 ) P ;  ei is the standard basis of the 
input space R", thus dei is the impulse applied to the 
i-th input. 

This standard definition indicates that the H2 norm is 
characterized by the 12 norm of the impulse response, on 
the other hand the response of the system is dependent 
on the time when the impulse is initiated. Following 
[lo] the H2 norm for a periodic system s is defined by 

Definition in (26) corresponds to the standard H2 norm 
if the system s is time invariant. Furthermore, the H2 

norm for a periodic system is equivalent to  l/a of the 
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H2 norm of its lift. The generalized H2 norm for the 
system sp (Dl2 = 0) takes the following form 

I Is2 112 (27) 

iPi(t + N, t)T 1 
1 

Bz(t)T*(t + N ,  t + 
icZ+ B2(t+N-1)T 

... 1 
x [ ciit) 

1 
= ( - t r C  

x [*(t + N - 1,t)TC2(t + N - 1)T ... C2(t)TIT 

q t  + N ,  t )  
C2(t + N - l)*'(t + N - 1, t )  

x [*(t + N ,  t + l)Bz(t) ... Bz(t + N - l)])' . 
By grouping the terms containing the matrix B2(.) 
Eq. (27) is simplified to the following expression 

I Is2 I I2 . N-1 t+N-1 
= ( i t ,  Bz(t)T( *(t + N,t)T 

t=O j=t iEZ+ 

x cP(t + N , j  + 1)TC2(j)TC2(j)*(t + N , j  + 1) 
x *(t + N,t))Bz(t))*. 

The s u m  in the inner bracket is the solution of the alge 
braic Lyapunov equation (13), which as mentioned be 
fore is equivalent to the periodic solution of the periodic 
Lyapunov equation (11) 

3 LMI 

The design of the optimal periodic HZ control algorithm 
addressed in this section will be observer based. The 
argument for using this paradigm is that the separation 
principle is valid for periodic systems [2]. 

Consider the system SI with full state space information, 
i.e. C2 = I, and D21 = 0, and periodic state feedback 
u(t) = K(t)x(t), K(t + N )  = K(t). The objective of 
the control design is to compute a gain K(t) for which 
the transfer function 

sc : w z, 

The main results are summarized in the following theo- 
rem. 

Theorem 1 Consider a periodic discrete time system 
se, (A(t), B2(t)) stabilkable. The suboptimal H2 prob- 
lem Eq. (30) is solvable i f  and only i f  there exists a sym- 
metric periodic matrix .Q(t) and a periodic Z ( t )  such 
that 

. ( w ~ ( t ) ~ A ( t )  + W2(t)TCi(t)) Q(t - 1) 
x 
- 

(A(tlTWi (t) + C1 (t)TW2(t)) 
wi(t)TQ(t)Wi(t) ' W2(tITW2(t) < 0,  

(31) 

trE Z ( t ) )  < Ny2, (33) 
t=O 

We shall use Projection Lemma [12] in the proof of The- 
orem 1. For consistency of presentation it is provided 
below, 

Lemma 2 (Projection Lemma) For aTbitrary ma- 
trices *, and *b and a symmetric p, the LMI 

Gzx*b + *rx\ka + P < 0 ,  

WTPW, < o and w;fPwb < 0, (35) 

where W,,Wb are any matrices with columns forming 
bases for the null spaces of *, and *b. 

(34) 

is solvable i f  and only i f  

Proof of Theorem 1 Using the findings of Sec- 
tion 2.3, Eq. (28) the generalized HZ norm )Isc112 < y 
is equivalent to 

N-1 

t r  B~( t )~Q- ' ( t )B2( t )  < Nr2, (36) 
t=O 

where Q is N-periodic and satisfies the inequality 

Q-'(t - 1) - Ac(t)TQ-l(t)Ac(t) - Cc(t)TCc(t) > 0, 
(37) 

but Eq. (36) is  equivalent to 

t r z  z(t)> < Ny2, (38) 
t=O 

where Z ( t )  is  a solution of the following LMI 

Bl(t)TQ-l(t)Bl(t) < Z.  (39) 
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The result of applying the Schur complement [I21 on 
Eq. (39) is the LMI (32). 

The next step is to use the Schur complement twice on 
Eq. (37) which gives two equivalent forms 

For the purpose of the control synthesis Eq. (41) is 
grouped into K( t )  and Q(t) dependent terms 

+ 
. +  

but the structure of Eq. (42) corresponds to Eq. (34), 
thus the LMI (42) is solvable if and only if 

where 

The LMI (44) is always fuljilled, whereas (43) e's equiv- 
alent to  

[nl l ( t )  < 0 ,  where (46) 
a21 ( t )  a22 ( t )  

Applying the Schur complement in Eq. (46) the 
LMI (31) results.. 0 

~ 
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The control design scheme consists of first finding a peri- 
odic matrix Q(t) solving the LMIs (31) to (33), and then 
subsequently a controller K( t )  fulfilling the L M I  (42) 
has to be computed. 

A l g o r i t h m  1 

i. Find using the LMI technique a symmetric matrix 
Q ( t )  and a matrix Z(t) fort = O...N - 1 satisfying 

(w~(t)~A(t)  + W2(t)TCi(t))  Q(t - 1) 

(A(t)TWi ( t )  + C1 (tITW2(t)) 

wi(t)TQ(t)Wi(t) - w2(t)TW2(t) < 0 

x 
- 

2. For each t = O...N-1 find using the LMI technique 
a matrix K( t ) ,  which satisfies 

Remark 1 The H2 suboptimal controller suggested in 
this paper fulfills Eq. (37), hence the system is stable 
according to Corollary I .  

Remark 2 The observer synthesis reduces to an appli- 
cation of the duality argument. The following system is 
considered 



The problem Eq. (49) is solvable if and only if there 
exists a symmetric periodic matrix Q(t) and a periodic 
Z ( t )  such that 

N-1 

t=O 

= ker [C2(t) D21(t)]. The observer 

gain is a solution of the following LMI 

-I “ 1  -Q(t) [ A t )  -Q-’(t - 1) Bl(t) 
Bi (tIT 

+ [C2(t) 0 D z ~ ( t ) ] ~ L ( t ) ~  [O 1 01 

+ [0 I OITL(t) [C2(t) 0 Dzi(t)] < 0. 

4 Conclusions 

This paper focused on the generalized H2 suboptimal 
control synthesis for discrete time periodic systems. The 
necessary and sufficient conditions for solvability of this 
problem were formulated. The algorithm for state feed- 
back control synthesis was suggested. 
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