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Abstract

An architecture for fault tolerant feedback controllers based on
the Youla parameterization is suggested. It is shown that the
Youla parameterization will give a residual vector directly in
connection with the fault diagnosis part of the fault tolerant
feedback controller. It turns out that there is a separation be-
tween the feedback controller and the fault tolerant part. The
closed loop feedback properties are handled by the nominal
feedback controller and the fault tolerant part is handled by the
design of the Youla parameter. The design of the fault tolerant
part will not affect the design of the nominal feedback con-
troller.

1 Introduction

The area of fault tolerant control is a new area and not a very
mature one. However, there is a number of survey papers that
gives a good introduction to the area, see e.g. [1, 11, 12].
In spite of the area of fault tolerant control being a new area,
there exists a number of different concepts/architectures for ob-
taining fault tolerant feedback control. Some of the applied
methods/approaches are ad-hoc methods that work quite well
in practice. Others are more theoretical based methods.

The concept of fault tolerant control (or reconfigurable con-
trol) is closely related to the area of robust control, fault diag-
nosis and supervision, see [12], where all the areas are shortly
described together with a list of key results in every area the
last years. The fault tolerant feedback control problem can
be considered from an analytical point of view and uses stan-
dard design methods. A description of these analytical based
methods can be found in see e.g. [6, 8, 9, 10, 14, 16]. As an
alternative to the analytical methods, several algorithm based
methods can be applied, see e.g. the suggested architecture for
implementation of fault tolerant controllers given in [1]. The
architecture consists of a number of levels, where some of the
levels include analytical based algorithms, others logic based

algorithms and others a combination. Most of the fault tolerant
controller architectures include a combination of analytical and
logic based algorithms, [1, 12]. Compared to standard robust
feedback controllers, fault tolerant feedback controllers has a
quite more complex structure, which make it more difficult to
design optimal fault tolerant controllers than robust feedback
controllers.

The concept/architecture for a fault tolerant controller that will
be considered in this paper is based on the Youla parameteriza-
tion of all stabilizing controllers for a dynamical system, [17].
The Youla controller architecture has a number of features that
are very useful in connection with fault tolerant feedback con-
trollers. This includes the simple way to describe all controllers
that will stabilize a system, an easy way to change controllers
on-line without affecting the stability. Another important as-
pect of the Youla architecture is the possibility to get a residual
vector directly that can be applied for fault diagnosis. Using
the reorganized implementation of the Youla parameterization
described in [15], it turns out that the input vector to the Youla
parameter is directly a residual vector, see the design of resid-
ual generators by using factorization in e.g. [3, 4]. All together,
the Youla architecture includes the main parts of a fault toler-
ant feedback controller. It is therefore obvious to investigate
the Youla architecture in connection with fault tolerant feed-
back control.

The main result in this paper is an architecture for fault tolerant
feedback controllers based on the Youla architecture. It will
be shown that by reorganizing the standard Youla controller as
done in [15], it is possible to get a residual generator in the con-
troller, and to get a separation between feedback control and
fault tolerance with respect to additive faults. This separation
gives a very simple design of the fault tolerant part of the con-
troller. This design will not affect the closed loop performance
obtained by the nominal controller.

The approach presented here is only assumed to handle a single
fault at any time. It is quite easy to generalize the approach to
handle more than a single fault at any time, but the controller
structure can/will get more complicated in that case.

The rest of the paper is organized as follows. The system setup



is given in Section 2 together with a short introduction to co-
prime factorization of dynamical systems and a formulation of
a fault tolerant feedback control problem. Section 3 includes
the main results of this paper, where the fault tolerant control
problem is formulated as a number of

���
problems. The paper

is closed by a conclusion in Section 4.

2 System Setup and Problem Formulation

Consider the following state space description for a plant or a
system given by��� �� �
	�
� ��� � ����� � ������������ � �"!#�$���%&�"��'(�)�*!#' ���
�+!#',��� (1)

where �.-0/21 is the state vector, �.-0/43 is the control input
vector, �5-6/47 is the output vector to be controlled, and %6-/#8 is the measurement vector. The fault signal vector �9-4/0:
is a collection of fault signals �<; , = �?>�@$AB@ C C CD@$E , into a vector.
Further, the coefficient matrices �F� and !#' � are referred to
in the literature as failure signatures associated with the fault
vector � . Furthermore, the coefficient matrices �G� H ; and !#' � H ;
are referred to in the literature as failure signatures associated
with the = -th fault, while �<; itself is called the = -th fault signal.
Obviously, the failure signatures �F� H ; and !#' � H ; depend on the
physics of the given system.

The system setup given in (1) can be rewritten in a transfer
function form given by:�JILK(MN�+���OILKQPGR5��M$SUTD�����VILK(M�WIL���OILKQPGR5��M SUT �X�6!#�$�OMY�VILK(M�*ZF�D�JILK(M[�VILK(M\�6ZF�$�]ILK(MY�VILK(M%^ILK(M_�`IL��'aILKQPGR5��M SUT �����6!#' ��M[�VILK(M�WIL��'aILKQPFR5��M SUT �b�6!#',�OMY�VILK(M�*ZF' �cILK(M[�VILK(M\�dZF',�JILK(MY�VILK(M
The above system description in (1) includes both actuator
faults, sensor faults and plant faults by a proper selection of
the failure signatures Ie�F�a@f!#' ��M , [14].

Now, let a coprime factorization of the system Zg',�JILK(Mh���'BILKQPgRi��M SUT ���F�j!#',� from (1) and a stabilizing controllerk ILK(M be given by:ZF',�l�nmg�OohSUTp�rqohSUT�qmg�c@smg�c@$oX@�qmg�c@Wqo_-2/ �4�k �XtFu SUT �
qu SUT qtW@ tp@$uv@^qtg@]quw-2/ �4�
(2)

where the eight matrices in (2) must satisfy the double Bezout
equation given by, see [17]:x Pzyy{Pj| � x qu R5qtRXqmg� qo | x o tmg�zu}|� x o tmg�zu}| x qu R5qtRXqmg� qo | (3)

Let the controller
k ILK(M be an observer based feedback con-

troller given by:k ILK(Mv� x �j�6����~��6�9��'��6��!#',��~ R��~ y | (4)

where ~ is a stabilizing state feedback gain such that ���4�F��~
is stable and � is a stabilizing observer gain such that ����9��' is stable. One possible way to construct the eight stable
coprime matrices in (2) is then:x o tmg�zu}| � �� �j�6����~ ��� R��~ P y��',� !#',� P���x qu R qtRXqmg� qo | � �� �j�6�9��' R���',�*�~ P y��' R�!#',��P ��

(5)
with ��',�6�n��'��6!#',��~ and ��',�X�n��'��6��!#',� .

Based on the above coprime factorization of the system Zg',�JILK(M
and the controller

k ILK(M , we can give a parameterization of all
controllers that stabilize the system in terms of a stable param-
eter �G� ILK(M , i.e. all stabilizing controllers are given by [15]:k I �G� Mv�Xt#I �G� M[u�I �G� M SUT (6)

wheret#I �G� M��bt��do �G� @�u�I �G� Mv�bun�6mg� �G� @ �G� -2/ �4�
or by using a left factored form:k I �G� Mv�
qu�I �G� M SUT qt#I �G� M (7)

whereqtWI �G� M���qt�� �G� qoh@�qu�I �G� Mv�squn� �G� qmg�c@ �G� -2/ �4�
Using the Bezout equation, the controller given either by (6) or
by (7) can be realized as an LFT in the parameter �W� ,k I �G� Mv������IY���W@ �G� M (8)

where ��� is given by����� x tFu SUT qu SUTu SUT R�u SUT mg� | � x qu SUT qt qu SUTu SUT R�u SUT mg� |
(9)

Introducing the transfer function from fault � output % given byZF' � from (1) in connection with the coprime factorization ofZF',� in (2), we obtain the following relationship:%#��� ZF' ��ZF',�n� x ���| �rqo SUT � qmW� qmg� � x ���|
Reorganizing the controller

k I �g� M given by (8) results in the
closed loop system depicted in Figure 1, [15].



���� ��

���

��
	�� �


�

+-

+ �

�

�

� � �
�

� ��

� �
�

�

�

Figure 1: Controller structure with parameterization

The main observation which shall be exploited in the solution
to the fault tolerant control problem, is the following very sim-
ple expression for the transfer function from faults to measure-
ments in terms of the parameter

���
:

��� ���	���� ���� ��� ���� � �
� ���	���� ���� ��� ���� ��
	���� �
 � �!��� ���� � � �
� � ��#" ���� �� 	�� �
 � 	�� �%$ � ���� �� 	�� ��� � ���� �
� �&� ���� ��
	�� ���'� $ � ���� �
� ( � � ��� ���*) ���� �

where (3) has been exploited.

Another crucial observation is that the signal � in Figure 1 de-
pends in a very simple way on the fault signals

�
:� � �� � �� 	�� � ���� �
� ���� � � � " ���� � � ���� �

Hence, � is automatically a fault residual vector. This is equiv-
alent with the calculation of the residual vector by using factor-
ization as described in [3, 4].

In the setup given in Figure 1, the only input signal is the fault
signal. Normally, a reference input vector will also be included.
It is also possible to include a reference input vector in the setup
given in Figure 1. However, the reference input vector cannot
be placed arbitrarily in the setup. The input vector needs to be
placed such that the fault residual vector � is independent of
the input signal. The reference input vector needs to be placed
inside the controller to obtain that the vector is not observable
in � . In Figure 2, the reference input vector �,+ � is included.

From Figure 2, we get directly that� � �� � " ����.-�� �� � ( � " �,+ �/) " ���� ( � " �,+ �/)�10
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Figure 2: Controller structure with parameterization and refer-
ence input

for
� �20 and where

-� � � " �,+ � . This shows that it is
possible to include a reference input vector in the setup without� depending on the vector. A reference input vector will not be
included in the following, though.

3 Main Results

We propose a solution to the fault tolerant control problem
which is depicted in Figure 3 for the case with three faults. The
two controllers

���
and

� �
are the controller for fault rejection

and the “controller” for residual generation, respectively.
� �

is
normally named as the residual generator, [2].

Each of the
���43

in Figure 3 is a solution to an 576 model
matching problem of the form:888:9 �43 ( � � ��� ���43;) ���� 3 888 6=<?> �43 (10)

where > �43 is a real positive number, 9 �43
is some weighting

matrix, and
���� 3

denotes the @ th column of
����

. This suboptimal
formulation conforms with the commercial software packages,
although (10) actually admits an optimal solution.

In connection with the optimization of the (10), it is important
to note that

�
is a proper matrix. Therefore, if

�
�
is not a

proper matrix, a lower bound on > �43 is given by:888:9 �43 ���� 3 (4A ) 888 6=<?> �43
The weighting matrix 9 �43

that is included in (10) must be se-
lected to take care of the 576 norm at high frequencies.

It needs to be pointed out that other design methods than 5B6
optimization of the transfer function from

�
to � can be applied.

Similarly, each of the
� � 3

in Figure 3 is the @ th row of
� �

which in turn is a solution to an 576 model matching problem
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Figure 3: Fault tolerant scheme with three potential faults,
���� � �!���"����#%$

of the form: &&&�' �)(�*�+,��� �	 � - &&&�.0/21 �
(11)

where
1 �

is a real positive number and
' �

is some weighting
matrix. The design of

���
in (11) can also be separated into

single designs of each
����3

as in (10). The disadvantage in both
cases to apply 3 single designs for

��

and

���
is the order of

the controller dynamic will be 3 times larger compared with
two combined designs.

A possible suboptimal solution can be found in just one design
step from the following 4 .

(model matching) standard model:��5�76 ��98: 8; ��98: 8
��<8= 8; ��<8= 8
?> �A@B 6 ' 
 � �	 �' � > 6 ' 
 	�
' � >�	 � C DE
A solution

�
that makes&&&GF!H�I ( ���JK�L- &&&�.M/N1

can be partitioned as �5�76 ��
��� >
where the rows of

��

constitutes the

��
�3
’s and the rows of

���
constitutes the

����3
’s.

In fact, a rational suboptimal implementation uses only one
multivariable

�
which provides all

��
�3
and

����3
outputs.

However, the design of the residual generator
�)�

does not nec-
essarily have to be done by using an 4 .

optimization method.
Instead of using an 4 .

optimization of the residual generator,
methods as e.g. eigenstructure assignment, parity equations, to
mention a few methods. An introduction to these design meth-
ods together with other design methods can be found in e.g.
[2, 5]. In the case when it is possible to obtain exact fault iso-
lation, [7, 13], the design methods from [13] can be applied.

Until now, only the disturbance free nominal fault tolerant feed-
back control problem has been considered. In real applications,
the system will include both disturbances and model uncertain-
ties. Both disturbances and model uncertainties will affect the
design of the fault tolerant feedback controller. Let us consider
a system including disturbances described by:OQPSRT UWVX � Y X Z []\_^`Z [ �a� Z [ 
 �b �dc : XeZdf : \_^ Zdf : 
 �� �dc = XgZhf = \_^iZhf = � � Zhf = 
 �

(12)
where ^kjNl9m is the disturbance vector. The system can also
be described by using coprime factorizations. It is then given
by: � � n � = �o� = \ � = 
qp @B � ^� DE� ��r� � n �	 � �	 \ �	�
 p @B � ^� DE



The residual signal now takes the following form:

��������	� ��	
���
����� (13)

It can be seen from (13) that � will depend on the disturbance.
The closed loop transfer function from � and

�
to � is now

given by

� ������� ������� ����	� ��	
���
�����
In the design of the

�� "!
, the effect from the disturbance needs

to be taken into account to get an optimal fault tolerant feed-
back controller. If the effect from the disturbance is neglected
in the design of the

�� "!
, the effect from disturbances could be

increased instead of reduced in � when a fault appear in the
system.

Including disturbance in the system, the design problem for
�	 "!

from (10) is then given by:##%$  "! ����& ������ "!�� ����	�%! ��	
�� ##%')(+*  "! (14)

Only single faults appearing at the time has been considered
in this paper. However, there is no restriction that limits the
number of faults that appear at any time. It needs to be pointed
out that conservatism might be introduced in an , ' design of
the Youla parameter

�� 
, if the number of faults that can appear

simultaneously are higher than it will be in the actual case.

4 Conclusion

A fault tolerant feedback control problem has been considered
in this paper. The connection between using the Youla parame-
terization to describe all stabilizing closed-loop controllers and
residual generators has been considered. Using a special im-
plementation of the Youla parameterization, the input vector to
the Youla parameter is a residual vector. Based on this connec-
tion, an architecture for fault tolerant feedback controllers has
been formulated. Using this fault tolerant controller architec-
ture, there is a separation between the feedback controller part
and the fault tolerant part. The design of the Youla parame-
ter/controller turns out to be a model matching problem, that
takes care of the effect from faults in the external output.
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