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Abstract: A control synthesis for a spacecraft equipped with a set of mutually
perpendicular coils and a vector magnetometer is addressed in this paper. The
interaction between the Earth's magnetic �eld and an arti�cial magnetic �eld
generated by the coils produces a control torque. Comparison between the expected
magnetic �eld vector and the true magnetometer data is used for the attitude
determination. The magnetic attitude control and determination is intrinsically
periodic due to periodic nature of the geomagnetic �eld variation in orbit. The control
performance is speci�ed by the generalized H2 operator norm. The paper proposes
an LMI solution to this problem.
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1. INTRODUCTION

A tremendous progress in micro-electronics ob-
served in the last two decade made small, inex-
pensive spacecraft missions very attractive, and
technologically viable. However, due to reduced
allocated mission cost, the hardware including the
sensors and the actuators is often very simple, fur-
thermore the redundancy is limited or completely
avoided. The attitude control system from this
perspective has to be sophisticated enough to fully
utilize the existent hardware, but at the same time
computationally as simple as possible to increase
the reliability.

Probably the most typical actuator/sensor con-
�guration currently in use is a combination of
magnetorquer coils and a three axis magne-
tometer. This or similar con�guration was used
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on the British UoSat satellites, Danish �rsted,
South African SunSat, German Champ, Por-
tuguese PoSat. A vital common feature of the
magnetometer and the magnetorquer is that they
relay on the magnetic �eld of the Earth. The inter-
action of the geomagnetic �eld and arti�cially gen-
erated �eld in the coils produces a control torque,
whereas the comparison of the modeled and the
measured magnetic �eld of the Earth provides
attitude information. The attitude estimation and
control schemes developed in this paper use an
observation that the magnetic �eld is periodic 2 .

The idea in this paper is to consider the space-
craft as a linear periodic system, and to solve the
H2 control synthesis problem. The optimization
problem is formulated in this article by certain

2 The time propagation of the geomagnetic �eld vector

observed from an Earth stabilized spacecraft is a super-

position of two periodic motions: orbital and the Earth

spin. If a ratio of the two periods is a rational number the

geomagnetic �eld observation is periodic



linear matrix inequalities. There is a great num-
ber of publications treating the control synthesis
expressed by LMIs, however only very recently
periodic systems have been addressed. (Souza and
Tro�no, 2000) and (Bittanti and Colaneri, 1999)
have treated the robust stability problem of a pe-
riodic system with the LMI technique. (Dullerud
and Lall, 1999) have extended the LMI approach
to H1 control synthesis for the LTI systems,
(Gahinet and Apkarian, 1991), to periodic ones.
The attitude control approach presented in this
paper uses the method developed in (Wisniewski
and Stoustrup, 2001).

The literature on attitude control treats the mag-
netic estimation and control separately. There
is a great number of publications solving the
magnetic estimation problem using the Kalman
�lter with a time dependent Riccati equation,
e.g. (Le�erts et al., 1982), (Psiaki et al., 1990),
(Natanson, 1993), (Challa et al., 1997), (Psiaki,
1999), (Bak, 1999). A concept for attitude control
based on electromagnetic actuation has gained
a comparable attention lately. The early work
was based on an idea of designing magnetic con-
troller for the system with averaged parame-
ters, rather than time varying. This design strat-
egy was used both for bias momentum satellites
(Camillo and Markley, 1980), (Hablani, 1995) ,
(Hablani, 1997) and three axis control (Martel et
al., 1988). In the recent papers more sophisticated
control schemes were proposed, where not only
the linear, (Cavallo et al., 1993), (Arduini and
Baiocco, 1997), (Wisniewski and Markley, 1999),
(Wisniewski, 2000) but also nonlinear control
methods, (Steyn, 1994), (Wisniewski and Blanke,
1996), (Tabuada et al., 1999) were in focus.

The H2 attitude control synthesis addressed in
this paper is not completely new in (Wisniewski
and Markley, 1999) and (Wisniewski, 2000) the
equivalent L2 magnetic control problem was ad-
dressed. The solution proposed involved a periodic
Riccati equation. This paper tackles the prob-
lem using the linear matrix inequalities. General
schemes for the control synthesis and its dual
problem, estimation are proposed. From the im-
plementation point of view the advantage of the
LMI approach is that the computer burden of
the control synthesis is in the o�-line calculation,
whereas the on-board algorithm is simple. This
makes the �x-point implementation possible.

2. LMI

The argument for using this paradigm is that
the separation principle is valid for a periodic
system (Prato and Ichikawa, 1988).

Consider a system of speci�cations used for the
standard H2 synthesis

s1 :
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x(t+ 1) = A(t)x(t) +B1(t)w(t) +B2(t)u(t)
z(t) = C1(t)x(t) +D12(t)u(t)
y(t) = C2(t)x(t) +D21(t)w(t);

(1)

where the system matrices are periodic B1(t +
N) = B1(t) 2 R

s�n , B2(t+N) = B2(t) 2 R
m�n ,

C1(t+N) = C1(t) 2 R
n�r , C2(t+N) = C2(t) 2

R
n�p , D12(t+N) = D12(t) 2 R

m�r , and D21(t+
N) = D21(t) 2 R

s�p .

We shall �rst assume full state space information,
i.e. C2 = I, and D21 = 0, and periodic state
feedback u(t) = K(t)x(t); K(t+N) = K(t). The
objectives of the control design is to compute a
gain K(t) for which the transfer function

sc : w 7! z;

x(t+ 1) = Ac(t)x(t) +B1(t)w(t)
z(t) = Cc(t)x(t);

(2)

where Ac(t) = A(t)+B2(t)K(t), Cc(t) = C1(t)+
D12(t)K(t) satis�es

jjscjj2 <  (3)

The main results are summarized in the following
theorem

Theorem 1. (Wisniewski and Stoustrup, 2001)
Consider a periodic discrete time system sc,
(A(t);B2(t)) stabilizable. The suboptimal H2

problem Eq. (3) is solvable if and only if there
exists a symmetric periodic matrix Q(t) and a
periodic Z(t) such that

�
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�
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tr(
N�1X
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Z(t)) < N2; (6)

where im

�
W1(t)
W2(t)

�
= ker

�
B2(t)

T D12(t)
T
�
.

The H2 control synthesis is decomposed into a
feasibility problem of �nding symmetric periodic
matrices Q(t) and Z(t) meeting the inequalities
(4) to (6) and a problem of �nding a periodic
control gain K(t) satisfying the following LMI
(Wisniewski and Stoustrup, 2001)
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The following algorithm will be used in Section 3
for the periodic state feedback synthesis

Algorithm 1.

(1) Find using a symmetric matrix Q(t) and
a matrix Z(t) for t = 0:::N � 1 satisfying
LMIs (4) to (6).

(2) For each t = 0:::N � 1 �nd a matrix K(t),
which satis�es LMI (7).

The observer synthesis reduces to an application
of the duality argument. The following system is
considered

so : w 7! z;

x(t+ 1) = Ao(t)x(t) +Bo(t)w(t)
z(t) = C1(t)x(t);

(8)

where Ao(t) = A(t)+L(t)C2(t), Bo(t) = B1(t)+
L(t)D21(t). The observer synthesis is such that
the gain L(t) ful�lls

jjsojj2 <  (9)

The problem Eq. (9) is solvable if and only if there
exists a symmetric periodic matrix Q(t) and a
periodic Z(t) such that
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server gain is a solution of the following LMI
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The algorithm for periodic observer design is

Algorithm 2.

(1) Find a symmetric matrix Q(t) and a matrix
Z(t) for t = 0:::N �1 satisfying LMIs (10) to
(12).

(2) For each t = 0:::N�1 �nd L(t) which satis�es
(13).

In spacecraft applications a time invariant con-
trol/oserver gains are often desirable in simple
on-board implementations. In this case the step
1 in the Algorithm 1 and 2 remains unchanged,
whereas the periodic K(t) and L(t) may be sub-
stituted by the time invariant matrix K and L in
the step 2. The drawback of this approach is that
the K and L matrices do not correspond to the
optimal constant observer and controller gains.

3. MAGNETICALLY ACTUATED
SPACECRAFT

The objectives of this section is to apply Algo-
rithms 1 and 2 for the three-axis attitude control
of a spacecraft in a low, highly inclined Earth or-
bit. The spacecraft is actuated by three mutually
perpendicular electromagnetic coils. The interac-
tion between the geomagnetic �eld and the mag-
netic �eld in the coil produces the control torque.
The comparison between the expected magnetic
�eld vector and the true magnetometer data is
used for the attitude determination.

3.1 Spacecraft Model

The satellite considered in this study is modeled
as a rigid body in the Earth gravitational �eld in-
uenced by the aerodynamic drag torque and the
control torque generated by the magnetorquers.
The attitude is parameterized by the unit quater-
nion providing a singularity free representation of
the kinematics (Goldstein, 1980), (Wertz, 1990).

The control torque, Nctrl, of the magnetically
actuated satellite always lies perpendicular to the
geomagnetic �eld vector, b. Therefore a magnetic
moment, m, generated in the direction parallel
to the local geomagnetic �eld has no inuence on
the satellite motion. This can be explained by the
following equality

Nctrl = (m
k
+m?)� b =m? � b; (14)

where m
k
is the component of the magnetic mo-

ment parallel to b, whereas m? is perpendicular
to the local geomagnetic �eld.

Concluding, the necessary condition for power
optimality of a control law is that the magnetic
moment lies on a plane perpendicular to the
geomagnetic �eld vector.



Consider the following mapping

~m 7!m : m = ~m� b=jbj2 (15)

where j � j denotes the standard Euclidean norm,
and ~m represents a new control signal for the
satellite. Now, the magnetic moment, m, is ex-
actly perpendicular to the local geomagnetic �eld
vector and the control theory for a system with
unconstrained input ~m can be applied. The di-
rection of the signal vector ~m (contrary to m)
can be chosen arbitrarily by the controller.

The model of the sensor, a three axis magne-
tometer, will be developed in the following. For
simplicity of this exposition it is assumed that the
magnetometer measurements are provided in a
coordinate system spanned on the principal axes,
denoted a body coordinate system. The model of
the vector magnetometer is then

y(t) = R(q)b(t); (16)

where R(q) is the rotation matrix corresponding
to the attitude quaternion q and describing a
rotation from an orbit �xed coordinate system e.g.
Local-Vertical-Local-Horizontal Coordinate Sys-
tem (LVLH) to the body coordinate system; for
complete de�nition of the involved coordinate
systems the reader is referred to (Wisniewski et
al., 2000). The vector b(t) is the local magnetic
�eld seen from the orbit (LVLH) and reproduced
in this paper by the 8th-degree IGRF model
(Wertz, 1990).

Locally the attitude can be represented by three
coordinates. In this work three components of the
vector part of the attitude quaternion are used.
The continuous time linear model of the satellite
motion is given in terms of the angular velocity
and the vector part of the attitude quaternion
(Wisniewski, 2000)

d
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3
5 ;

where !o is the orbital rate, and Ix; Iy; Iz are
components on the diagonal of the inertia tensor
I (the principal moments of inertia). The matrix
Cs(t) corresponds to a vector product 2b(t)�,
the control matrix Bs(t) comes from the double
cross product operation �b(t) � (b(t)�) divided
by I. The upper left 3 by 3 submatrix of As is
due to Euler coupling, the submatrix in the upper
right corner arises from the gravity gradient, and
the lower part of the matrix A is the linearized
kinematics. Notice that the matrices Bs(t) and
Cs(t) are the periodic parts of Eq. (17). This is
due to periodicity the magnetic �eld vector b(t).

The model (17) is used in Algorithms 1 and 2
computing the periodic observer and controller
gains K(t) and L(t).

4. SIMULATION RESULTS

In the numerical calculations the satellite princi-

pal moments of inertia are assigned to
�
180 150 1

�T
,

which characterizes a spacecraft with a long grav-
ity gradient boom. The algorithm is implemented
in the Matlab LMI toolbox. The orbit is divided
into N = 100 samples. The normalized Earth
magnetic �eld vector is shown in Figure 1. The
components (5; 6), (6; 6) of Q(t) and (2; 2), (2; 3)
of the observer gain L(t) in Algorithm 2 are de-
picted in Figure 2. The components (5; 6), (6; 6)
of Q(t) and (2; 2), (2; 3) of K(t) in Algorithm 1
are depicted in Figure 3. It is seen that both the
observer and the controller gain are periodic as
expected. Comparing Figures 1 and 3 it is seen
that near the polar zones, where the z-component
of the geomagnetic �eld vector reaches maximum
and minimum values, the pitch and roll gains
increase, see the gray zones.

An impulse response of the closed loop system
gives a reasonable interpretation of a H2 control
performance. The result of the closed-loop sim-
ulation for 8 orbits is shown in Figure 4. The
initial attitude is q = [0:82 0:02 0:05 0:57]T. The
components q1, q2, q3 can be treated for small
deviations from the identity quaterion as half
values of pitch, roll, and yaw angles respectively.
For the spacecraft considered in the simulation
study pitch and roll are passively stabilized by
the gravity gradient, whereas yaw needs active
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Fig. 1. The normalized magnetic �eld vector of
the Earth computed for one orbit. The grey
zones correspond to the polar regions.
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Fig. 2. The components (5,6), (6,6) of the observer
matrix Q(t) and (2,2), (2,3) of L(t) computed
for one orbit in Algorithm 2.

control action. It is seen that after four orbits, yaw
is below the speci�ed value 0:1, which corresponds
to 10 deg., and the angular velocity is below 10�3

rad/sec.

5. CONCLUSIONS

A periodic control scheme for H2 control syn-
thesis was developed and implemented for the
attitude control and estimation. The design al-
gorithm presented showed the potential for on-
board implementation on a small spacecraft plat-
form equipped with a vector magnetometer and
magnetorquers.
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