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Abstract 

A way of doing parametric fault detection is described. 
It is based on the representation of parameter changes 
as linear fractional transformations (lfts). We describe 
a model with parametric uncertainty. Then a stabiliz- 
ing controller is chosen and its robustness properties are 
studied via mu. The parameter changes (faults) are es- 
timated based on estimates of the fictitious signals that 
enter the delta block in the lft. These signal estimators 
are designed by H, techniques. The chosen example is 
an inverted pendulum. 

1 Objectives and Motivation 

The problem of fault detection and identification (FDI) 
may be seen as a part of a more general and interdis- 
ciplinary problem known as fault tolerant control [8]. 
A fault tolerant control system can be based on the 
idea that an adequate controller should be robust to 
small faults and that more important faults should be 
detected and identified by a compatibIe FDI system. 
By compatibility here we understand that the controller 
should cope with faults that the FDI system can not de- 
tect with the sufficient degree of certainty and that the 
FDI system should detect faults to which the controller 
is not robust. We will treat a subset of this fault tolerant 
control problem, the design of the FDI system. 
The problem of model based FDI has been receiving in- 
creasing attention from the research community since 
the beginning of the seventies [ll]. The majority of 
the works and methodologies have modeled faults as 

additive, that is, faults are modeled as exogenous per- 
turbations affecting the system [3], [5],  [4J. On of the 
few exceptions to this is the use of parameter identifica- 
tion methodologies in fault detection and identification 
[SI. We can argue that many faults are better modeled 
as parametric. Another problem with the modeling of 
faults as exogenous inputs is that an exogenous input 
can not destabilize a system and a parameter change 
may do that. 
As we believe that the real nature of many faults is in 
fact parametric we consider parametric faults described 
as such. We are interested in designing an FDI sys- 
tem that is capable of detecting parametric faults and 
is compatible with the robustness margins of a given 
controller. Here we develop and apply an approach first 
suggested in [lo]. For simplicity and to keep a better 
track of what is happening an inverted pendulum model 
was chosen as example. 

2 Nominal Model and a Controller 

Consider the inverted pendulum shown in figure 1. 
While B and e are small the dynamic equations of 
the pendulum can be linearized and its state equation 
as shown in 1. The state vector was chosen to be 
CY = [ 6 z i- I T  and the state equation is written 
in standard matrix form as dr = ACY +- Bu, the output 
equation is y = Cx -t Du and as a zero D matrix and 
C will be the identity matrix if we assume all states are 
measured. 
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Figure 1: The inverted pendulum. [+[ Tg 0 0 1 0 0  0 0 1  [ I ] + [  $ I u  
0 0 1  

- 
X 3 9  0 0 0  x M 

We consider the nominal parameter values M = 2Kg, 
m = O.lKg, 1 = 0,5m, g = 9,8m.s-'. Obvious the 
inverted pendulum is an unstable system. The nominal 
model poles are p1,2,3,4 = 0, 0, f4.5365. In what follows 
a stable system is convenient. A controller is needed. 
For the moment, the controller and the FDI system will 
be designed in two separate processes. To proceed with 
the FDI design, with need the monitored process to be- 
long to RH,. So a feedback controller was designed for 
the nominal model by poIe placement. 
Assume all states are available for feedback. The closed 
loop poles were placed at  

The controller was designed as a regulator and its gain 
matrix, K, is shown in equation 3. The chosen dominant 
poles make the answer of the closed loop similar to the 
one of a second order system with q = 0.5 and natural 
non-damped frequency w,, = 2rad. s-l. 
K = [ -74.698 -16.587 -10.194 -9.174 ] (3) 

Besides stabilizing the system, the objective of the con- 
troller is to allow the following of a reference for the 
position of the cart maintaining the pendulum as close 
as possible to the vertical position. The closed loop is 
shown in figure 2 were K1 = [ 0 0 1 0 IT means a 
conversion of a reference of position to a reference of 
state. 

Figure 2: The closed loop. 

It can be shown that the steady state tracking error to 
a step reference input is zero. Simulation results of the 
response of the closed loop system to a step input and 
observation of the closed loop frequency response show a 
reasonably good behaviour and also show that the con- 
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troller does not ask too much from the actuator. From 
these points of view it seems a reasonable controller. 
The robustness of the closed loop system to  parameter 
changes will be studied after an adequate description 
of the parametric uncertainty. (Another way to proceed 
could be to design an H, controller by (by p synthesis), 
with previously defined robustness properties). 

3 Parametric Uncertainty 

Consider that each of the three parameters in the nomi- 
nal linearized model of the inverted pendulum is known 
with uncertainty or may change from its nominal value. 
The perturbed values of the parameter will be repre 
sented as in equations 4 to 6 where ma, MO and lo rep- 
resent the nominal values of the parameters. 

m = %(1+ Sm) (4) 
M=Mo(1+6rM) (5) 

1 = ZO(l+ Si) (6) 
Consider again equation 1. We want to represent all 
possible parameter variations as an upper linear frac- 
tional transformation. There are several ways to do this, 
it can be done analytically [7], or using block diagrams 
[12]. We will use this last way because it is shorter and 
easier. 
Consider equation 1 written as in equation 7 were a = 
M1 9, b = 3 g , c = d , $ = L  Y. Equation 7 can rep- 

resented by a block diagram as m figure 3. In that fig- 
we  we consider the outputs [ y1 y2 1' = [ 4 z ] . 
Other output equations would be treated in the same 
way. 

T 

0 1 0 0  

0 0 0 1  
X 

(7) 

I I 

Figure 3: Block diagram of the nominal model. 
To represent the parameter uncertainties, or perturba- 



tions, we treat each of the a, b, c and d blocks separately. 
Each one of the blocks is represented with the uncertain- 
ties as A-blocks. After, the results can be reunited into 
the overall diagram. After simplification this diagram is 
the desired lineas fractional representation and can be 
transformed into a set of equations describing the per- 
turbed model. The perturbed model find block diagram 
and the corresponding model matrices are represented 
in figure 4 and equations 8. Note that the model is in 
open loop. 

Figure 4: Block diagram of the perturbed model. 
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4 Stability robustness 

Consider the inverted pendulum in closed loop repre- 
sented as a linear fractional transformation as in figure 

5. The input-output transfer relation will be as in equa, 
tion 9 where N is considered partitioned as in equation 
10 and e = Fr. 

F = F,(N,A)  = 
= N a  + N2lA ( I  - NllA)-' N12 

A 

(9) a 

Nll N12 
N =  [ N21 N221 

Since the nominal system, N ,  and the perturbation A 
are stable, then the perturbed system will be stable if 
and only if ( I  - NIlA) has a stable inverse, that is, the 
determinant det ( I  - NllA) should never pass through 
zero. We will use M = N11. 
The stability analysis can be carried out with the help 
of the structured singular value, defined as in equation 
11. We will compute the smallest A, measured in terms 
of 3 (A), with the appropriate structure that will desta- 
bilize the loop. The loop will be stable to all pertur- 
bations, A,, with the adequate structure and having 

(pA(M))-' = min {F(A) : A E A, det(1- M A )  = 0) 

In Sgure 5 the K2 matrix selects the state error compe 
nent that corresponds to the cart position. 

B(AP) (Pa(M))-l. 

(11) 

e 

Figure 5: The cloosed loop in the N block. 

We can compute the state space representation of the 
system N and extract the M system as M(s)  = Nll (s ) .  
We then use pA( M) to determine the robustness margin 
of the closed loop. 
In our present case, all the perturbations in the A block 
are red. The p function is not necessaxily a continuous 
function when all the perturbation blocks are real [2], 
[l]. That may cause problems in the convergence of the 
algorithms used to compute the f i  lower bound. In fact 
in our case there are problems in computing the lower 
bound considering only real perturbations. To overcome 
this problem we use a trick suggested in 111, and add 
small complex uncertainties to the problem to give the 
computation better numerical properties. 
The upper bound of (pn(M)) computed considering 
only real perturbations was (pA(M)) < 1.8. This means 
that no real A perturbation with the required struc- 
ture that satisfies F ( A )  < 1/1.8 w 0.55 will destabilize 
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the system. This can be a little conservative, meaning 
that maybe larger perturbations are allowed. To gain 
a better knowledge of the p bounds some small com- 
plex perturbations were added and new p upper and 
lower bounds were computed again. We also observed 
the destabilizing perturbations for several frequencies 
and for dfierent values of the smdl complex perturb& 
tions. The conclusions are that the upper bound com- 
puted with only real perturbations is not too consenm 
tive. This means that each parameter may change as 
much as 55% without causing instability. 
We would like to detect changes greater than a certain 
initial uncertainty, say 20% in each parameter. In view 
of that some experiences were made to see how much 
each parameter may change before generating instabil- 
ity if the others stay inside the initial uncertainty inter- 
val. The results are as follows: 

Parameter M can augment 88% ( 6 ~  < 0.88) be- 
fore instability if IS,\ < 0.2 and l&( < 0.2; 

Parameter 1 can augment 100% (St < 1.07) before 
instability if 1 6 ~ 1  < 0.2 and IS,l < 0.2; 

Parameter rn can augment as much as 20 times its 
nominal value before instability if 1611 < 0.2 and 

All parameters may decrease as far as they do not 
become zero. 

Ism1 < 0.2; 

In view of this and the above results it seems feasible 
to design a filter that enable us to detect parameter 
changes before they cause stability problems. We may 
even be able to identify the parameter that changed. We 
could consider also the problem of keeping performance 
of the closed loop but for the moment we will care only 
about stability. 

5 Fault Detection and Identification 

What we want to do is to detect and if possible identify 
parametric faults. These are changes in the parameters 
that g o  beyond an initial uncertainty ball boundary. We 
want to detect parameter changes before they become 
too big, in our case, before they compromise the stabil- 
ity of the closed loop system. 
Consider a process with uncertain parameters repre 
sented as an upper linear fractional transformation. 
Consider also that we design a filter to estimate the 
fictitious signals, fp, that are outputs of the generalized 
system and inputs of the perturbation block. The setup 
used to design the filter F(s )  is represented in figure 6 
and the filter can be designed to be robust to the initial 
uncertainty set by ysynthesis [lo]. With p-synthesis 
we perform a search for a filter that minimizes the H ,  
norm from d to e, considering all the allowable pertur- 
bations. In this context ”allowable perturbations” are 
the initial parameter uncertainty, Apr. 
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I ,  I I  

Figure 6: The residual generation setup. 

If we have a flter that is able to  estimate the signal 
f, well we can try to do fault detection and identifica- 
tion. One way to do it is tc estimate the elements in 
Apor using the estimate of fp and the structure of the 
uncertainty block. 
5.1 Estimating the A elements 
In our case study the A matrix has a very special struc- 
ture and that structure may be used to try to estimee 
the elements of the block based on good estimates of fp 
The components of fp can be related to  the inputs wf 
and d of the generalized system in figure 6 by the ma- 
trices described in equations 8. The relations obtained 
are in equations .12 to 15. 

fpl = f p 2  = 2 1  (12) 

+ -gzl + X W f 1  + -Wf2 9 f 
Mol0 Mol0 10 

fp3 = 
1 
1 - Wf3 - -U 

Mol0 

Mo + mo -g 9 
f p 5  = - Mol0 9 “ 1 +  -wfl+ Mol0 G W f 2  + 

1 - Wf3 - Wf5 - -U 
Mol0 

Assume we know the ffi (we know its estimates). We 
measure z1 and we also know the input U. Then we can 
wiite equations 13 to 15 as a system of equations with 
unknowns w i .  That system is in equations 16 where 
bl = fp3 - & g q +  &U and the other bi and a;j 

are determined in a similar way from equations 13 to  
15 using known constants and measured or estimated 
signals. 

Expressing each wfi as wfi = &fpi we can write equa- 
tions 17 and 18. From this last equation it is possible to  
estimate the three different elements in the A matrix, 



6,, SM, and 61. Th2t is, if we have good estimates of 
the components in f p .  

61  = a 1 1 6 m f p l  + a 1 2 6 M f p 2  + a 1 3 6 M f p 3  

b3  = a 3 1 6 m f p l  + a 3 2 6 M f p 2  + a 3 3 6 M f p 3  $. a3561fp5 
b2 = a z i 6 d P l  + a 2 4 6 M f p 4  

(17) 

(18) 
h = C l l a m  + ~ 1 2 6 ~  
bZ = C216m + c226M 
b 3  = C316m + C 3 d M  + c3361 

With the setup just described we can estimate the dis- 
tance of each parameter to its nominal value and, hope 
fully, detect and identify parametric failures. 
The elements qj in 18 are as defined in 19 and the 
solutions to the equations 18 are expressed in equations 
20 to 22. Note that f p l  and fpz  axe measured as they 
are equal to the first state of the inverted pendulum. 

A 

c l 1  = a l l f p l  9 c12 = a12fpZ + a 3 1 f p 3  

c21 = a 2 1 f p l  3 cZ2 = a24fp4  1 c31 = a 3 1 f p l  

c3Z = a 3 2 f p 2  + a33fp3 , c33 = a35fp5  

, 
A 

(19) 
A A 

Note however that equations 20 to 22 are not defined 
when the e, that appear in the denominator are zero. 
That happens when the corresponding f f i  signal is zero 
has can be seen from equations 19. The computation 
of the estimates of 6,, 6~ and 61 must account for this 
restriction. 

6 Filters 

We want to design a filter to estimate the f p  signals as 
shown in figure 6. That filter should be robust to some 
uncertainty in the parameters, that is, it must have an 
acceptable performance even in the presence of uncer- 
tainty. The main idea is to minimize the H, norm from 
d to  e. One way to express the required performance is 
to d e h e  the amplitude of the frequency response we 
want from d to the estimation error, e. After choos 
ing those weighting factors p-synthesis procedure can 
be used to design the filter or we can use an H, syn- 
thesis and then verify if the performance robustness is 
sufficient. If it is, the filter have been determined, if not, 
other iterations have to  be done. 
As the design process is not very simple and includes the 
choice of weighting factors that need to be determined 
and some other details necessary to meet the applica- 
bility conditions of the algoritms to be used we chose to 
proceed in smaller steps. First H, filters are designed 
to estimate each one of the signals in f,,. This will allow 
an easier choice of weighting factors and a better idea 
of the possible performance of each filter. Next a global 

bl c11 6~ =z - - -6, 
c12 c12 
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H, filter is designed based on the previous designs. Fi- 
nally a psynthesis procedure could be used to  design a 
p filter to deal explicitly with the uncertainty. 
More on p-synthesis and H, design can be found in [9] 
or [E]. 

6.1 For the H, design 
The design setup for the H, filter is shown in figure 7. 
In that figure W(s)  is a weighting factor that helps to 
define the desired performance of the filter and Q is the 
process shown in figure 8. The design will minimize the 
H, norm of the transfer relation from [ T r ,  ]* to z. 

Figure 7: General design configuration. 

In the Q process shown in figure 8 the signal T~ denotes 
measurement noise that was added to  satisfy some appli- 
cability conditions of the algorithms used in the design, 
namely conditions over a part of the D matrix. The 
noise magnitude should be chosen small. In our case, 
for example it can be chosen to  have the magnitude of 
0.3% of the maximum value taken by the affected mea 
sure when the reference input is a unitary step. All the 
four state variables are considered measured. 

Figure 8: Base process for filter design. 

6.2 A filter computed via H, 
We want to use estimates of f p  to do parametric fault 
estimation. As can be seen from equations 12 to 15 we 
only need to estimate the three last elements of f , , .  The 
first two are measured. 
We sellected one weighting factor for each of the three 
signals we want to  estimate, f p 3 ,  fpa  and fp5. The 
weights are shown in equations 23 and 24. The fi- 
nal value achieved in the design for the y parameter is 
y = 0.87. This 7 value indicates some robustness mar- 
gin, meaning the filter can satisfy the performance spec- 
ified by the weighting factors in the presence of some 



uncertainty. 

(23) 
4 x 104 (. + 0.001) 
(s + 0.01)~ (s + 1 0 ) ~  

W4(S) = 

12500 W3(s) = W&) = - 
(s + 1 0 ) ~  

The weights were chosen by m e w  of several iterations, 
starting with the observation of the transfer functions 
from the reference input to the signal to be estimated 
and observing the performance. The filter obtained has 
15 states, 3 outputs and 4 inputs. The performance 
we could obtain with the above weighting factors corre- 
sponds to  a frequency response from the reference input 
to the estimation error of magnitude less than for 
all frequencies below lorads-'. The problem is that the 
signals themselves are also small in small frequencies. A 
more useful measure of performance is the frequency re- 
sponse of a relative error. This relative error is defined 
as the gain from the reference to the estimation error di- 
vided by the gain from the same reference to the signal 
we are estimating. The relative estimation error along 
the fiequency, for each of the 3 channels has a similar 
shape. In figure 9 we shown it for channel 4. This rela- 
tive errors were useful in choosing the weighting factors. 
As we can see from the relative error plot in @e 9, 
only the estimates in certain frequency ranges are good 
enough to be used for the computations indicated in sec- 
tion 5.1. The estimates must be appropriately filtered 
to be used in those computations. Simulations will show 
how good can be the values of 6,, 6~ and 6, calculated 
using the equations in section 5.1 and the estimates gen- 
erated by this filter. If they are good enough they can 
be used to detect parameter changes. 

0 

-i 

-2 

-3 

4 

10 O 10 ' 10 * 
lo -' Frequency (radls) 

10 -= 

Figure 9: Relative error, channel 4. 

7 Conclusions 

H, and p techniques may be used to design estimation 
filters for parametric fault detection. They also allow 
verification of robustness properties of the filters. That 
is important because the filters should give good esti- 
mates of the signals of interest even in the presence of 
small parameter variations representing uncertainty. 
For the study case, the particular structure of the equ& 

tions obtained with the upper linear fractional trans 
formation representation of parameter variations allows 
the computation of estimates of two of those parameter 
variations from estimates of a set of fictitious signals, 
f,, that can be estimated from measured and/or known 
quantities and signals. 
The same technique may be applied to other systems in 
a similar way. Although in this paper no external dis- 
turbances were considered they may easily be included 
in the formulation. 
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