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Abstract 

In this paper a deterministic method for obtaining the nomi- 
nal and uncertainty models of the focus loop in a CD-player 
is presented based on parameter identification and measure- 
ments in the focus loop of 12 actual CD drives that differ by 
having worst-case behaviors with respect to various prop- 
exties. The method provides a systematic way to derive a 
nominal average model as well as a structured multiplica- 
tive input uncertainty model, and it is demonstrated how to 
apply pthemy to design a controller based on the models 
obtained that meets certain robust performance criteria. 

1 Introduction 

Optical Disc Drives (ODD) are mainly characterized by the 
absence of the physical contact between the pick-up and the 
disc. Feedback control is necessary to control the position 
of the focus point of the laser in order to read the data. ' h a  
main control loops can be identified: the focus loop which 
maintains the focus point of the laser on the signal layer, and 
the radial loop which follows the track. Since the compact 
disc player was introduced in the market two decades ago, 
more products based in the same technology have been de- 
veloped, as CD-ROM and DVD players having a track pitch 
of 1.6 pm and 0.78 p n  respectively. Recently a new stan- 
dard has been announced in Tokyo (february 20021, the so- 
called blue ray disc with a track pitch of 0.32 pm. The trend 
is clear, towards higher storage capacity and data transfer 
rate. The performance requirements to the position con- 
trollers have therefore increased at the same time. In paral- 
le1 to the development of ODD's, much effort bas been spent 
to solve the multivariable robustness analysis and synthesis 
where different classes of uncertainties have been consid- 
ered. Unstructured uncertainties (full-block complex per- 
turbation uncertainties) can be used in the FL framework, 
see PGKFE91. In general, a less conservative controller is 
achieved if the control problem is formulated in the p frame- 
work which considers structured uncertainties. Common to 
both approaches is the description of model uncertainties as 
transfer functions, which are norm-bounded but otherwise 
unknown. Extensive literature can be found explaining bow 

to formulate multivariable robustness problems but usually 
the nominal and the uncertainty models are assumed to be 
known. In a more realistic situation, the designer may only 
have a set of complex paints in the Nyquist plane from sev- 
eral worst-case plants. Having a limited knowledge of the 
plant, it might not be trivial bow to obtain a nominal and 
uncertainty models suited for the robust control framework. 
A possibility is to circumscribe the set of complex points of 
the different plants with discs at each frequency point. The 
center of the discs can be fitted to a rational transfer function 
yielding the nominal model and the radii of the circles repre- 
sent the uncertainty model. This procedure is conservative 
as the obtained uncertainty model will introduce possible 
plants that are not present in the original set. Inherently, 
conservatiness in an uncertain model results in reduced per- 
formance. However, in view of the fact that the performance 
requirements of the ODD's positioning controllers are con- 
stantly increasing, this is unfortunate. In this paper a deter- 
ministic method for obtaining the nominal and uncertainty 
models of the focus loop in a CD-player is proposed, which 
is less conservative than the approach mentioned above. A 
thorough treatment of robust control approaches to CD con- 
trol can be found in [SSB96]. Actually, two entire theses bas 
been dedicated to this subject, see [L.ee98, DetOl]. The re- 
mainder of this paper is organized as follows. In Section 2 it 
is described bow empirical models are derived from experi- 
ments on a number of different CD drives. These empirical 
models are exploited in Section 3 to derive both nominal 
and uncertainty models. The nominal model and the suuc- 
tured uncertainty model are in turn used in Section 4 for 
compensator synthesis. The synthesized compensators are 
evaluated in simulation in Section 5.  Finally, the findings of 
this paper are summarized in Section 6.  

2 Set of Nyquist points in 12 CD players 

The optical pick-up is a 2-axis device, enabling a movement 
of the lens in two axes: vertically for focus correction and 
horizontally for track following. ' b o  coils which are or- 
thogonal to each other are suspended between permanent 
magnets. A current through a coil creates a magnetic field 
which interacts with the magnetic field h m  the permanent 
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magnet and the coil and consequently the lens will move in 
the corresponding direction. In this paper it has been chosen 
to study the focus actuator only. Similar results, however, 
!"fer immediately to the radial loop, which has essen- 
tially the same dynamics. Fig. 1 shows the focus loop bode 
plot of 12 specific CD drives which have been chosen from 
a larger set by extreme property behavior. 
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Fignn 1: Empirical models of 12 CD drives. 

Two different methods have been employed in combination 
in order to obtain the bode plots, see [VSA+OI], yielding 
12 focus open loop bode plots. Thus, the models used in 
this paper are linear. A method for modeling some of the 
nonlinesxities is described in [WOO]. Another approach for 
linear modeling of CD mechanisms is given in pGRV921. 

From fig.1 it can be seen that the resonance peak around 
30m] varies in frequency. The parasitic dynamics around 
500 [Hz] vary in phase and amplitude. The CD drives have 
certain worst-case behaviors according to the specifications 
in the data sheet. 

3 Nominal and uncertainty models 

The resulting bode plots can be mapped onto the Nyquist 
plane. A straight forward method for obtaining the nomi- 
nal and uncertainty models is to encircle the Nyquist plot of 
each frequency measurement which consists of 12 points, 
one for each CD drive. This first set of circles are chosen 
to be of minimal area. A transfer function, called nominal 
model, G(s), is fined to the center of the circles and the ad- 
ditive uncertainty model, WA(S),  is then given by the second 
set of circles which contains the 12 points at the frequency 
in question and where the center is given by the fined nom- 
inal model. The multiplicative uncertainty model, W~(S) is 
obtained by dividing the additive uncertainty model by the 
nominal model at every frequency point. 

G p ( s ) = G ( ~ ) ( 1 f W , ( ~ ) 6 )  6 E C ,  16151 V a  (1) 

G, represents the perturbed plant with multiplicative 
uncertainty given by the weighting function W,(s). 
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The second set of circles is obviously equal or of larger area 
than the first set. There are two main sources of conser- 
vatism with this method. The nominal model is a result 
of fitting the transfer function to the center of the circles. 
The lower the order, the higher the conservatism. The other 
some of conservatism is that circles yield a full-block com- 
plex perturbation uncertainty model, see eq. 1. The Nyquist 
plot of each frequency measurement which consists of 12 
points rarely has a circular shape distribution and an encir- 
clement of the points will introduce certain conservatism 
as the uncertainty model will contain plants which are not 
physically possible. Fig. 2 shows the Nyquist plot of the 12 
CD drives with the obtained nominal and uncertainty model. 

Figure 2: Second set of circles. 

Figure 3: Frequency domain representation of the perturbation 
%St 

In order to reduce the conservatism another geometric fig- 
ure is considered in this paper, whicb is composed by a rect- 
angle and two semicircles, one at each end of the smallest 
side of the rectangle. see fig. 3. This geometric figure can 
mathematically be described by a real and a complex per- 
turbation, see eq. 2. 

Gp(s)  = G(s)(l +Wc(s)SC+W,(s)6,) 
& E C , ~ , E R ,  p c l ~ l , - 1 ~ S , ~ i  (2) 

where WJs) and W,(s) are the complex and real perturha- 
tion weights respectively. For convenience the geometric 
figure. is denoted Olympic stadium (OS). Two main relevant 
methods can be distinguised for choosing OSs. The first one 
is choosing a minimal area OS, which at ftrst sight may be 
the least conservative solution. The second one, treated in 
the sequel, is choosing the narrowest OS. Certain geometric 



calculations show that the narrowest OS reduces the conser- 
vatism compared to a circle if the large side of the rectangle 
is $ times larger than the smallest side. 

Finding the first set of 0% 
In order to calculate the narrowest OS, first the convex hull 
of the set of Nyquist points for each frequency is deter- 
mined. This convex hull will he a convex polyhedron with a 
subset of all the points observed as its vertices. The process 
of finding these vertices is shown in the upper subfigures of 
fig. 4. Once the polyhedron is determined, the distance be- 
tween every side and its "most distant" point is calculated. 
A parallel line to the side in question containing its "most 
distant" point is traced and the remaining vertices must lay 
in between in order to ensure that the OS will contain all the 
points. If not all the vertices lay in between, the "most dis- 
tant" point in question is not valid. The side with its closest 
valid "most distant" point is chosen and a parallel line to the 
chosen side is traced, which contains its closest valid "most 
distant" point. The sides of the OS are then found, see lower 
left fig. 4. The half of the distance between the two paral- 
le1 lines determines the radius of the semicircles, W,. These 
semicircles are moved in the same direction as the parallel 
lines towards the polyhedron until a vertix of the polyhe- 
dron is contained by the semicircles, see lower right fig. 4. 
The half of the distance between the radii of the semicircles 
is W,, and LW, is the angle between the principal axis of the 
OS and the shown coordinate system. 
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Figure 4 Calculating the first set of narrowest OSs. 

Once the first set of OSs is found, a rational transfer func- 
tion is fined to the center of the OSs yielding the nominal 
model. As a result of the fit, the center of the OSs will no 
necessarily coincide with the nominal model and therefore 
a second set of OS must be found in order to center them 
acconiing to the nominal model. 

Finding the second set of 0% 
The algorithm to find the second set of OS is slightly more 
involved since the center for each OS (which is not neces- 
sarily inside the polyhedron) is given by the nominal model. 
First the convex polyhedron must be determined, which is in 

fact the same polyhedron as for the first set of OSs, (a t r m -  
lation of the Nyquist points, as a result of the fit, does not 
alter the shape of the polyhedron). There are now two can- 
didates which yield the narrowest OS: One side of the OS 
contains at least two vertices of the polyhedron. The sec- 
ond candime is when the sides of the OSs contain at least 
one vertix each. For the shake of clarity, this is illustrated 
in fig. 5. The first case is shown in the two upper subfig- 
ures. Consider a polyhedron given by 3 vertices where the 
given center (without loose of generality) lays outside, see 
left upper subfigure. For each side, the distance with respect 
to the given center is calculated and the side where the given 
center is the closest valid "most distant" point is selected. A 
parallel lme to the selected side is traced such that the given 
center is exactly in the middle, see right upper subfigure. In 
the second case, shown in the two lower subfigures of fig.5, 
where the center is also outside the polyhedron, it is clear 
that if the same method is applied as in the first case, it will 
not yield the narrowest OS. Instead all the median points 
must he calculated, represented as dots (m,, mz and ms) in 
the right lower subfigure . A line from the given center to 
a median point is traced. If the "most distant" points of the 
median point are its corresponding two vertices, the median 
point is valid (in order to ensure that the OS will contain all 
the points). This procedure is repeated for all median points. 
The median point which has the closest "most distant" ver- 
tices is then selected yielding the narrowest OS. In the right 
lower subfigure, according to the described procedure, m3 
is selected and as a result the narrowest OS is found. 

As it can be seen, finding the narrowest OS where the cen- 
ter is given, implies the investigation of both cases and the 
narrowest OS among both cases is selected. Once the sides 
of the OS are found, the two semicircles can be found as 
described in the method for finding the first set of 0%. 

1 
2 1 6 8  

Figure 5: Calculating the 2nd set of narrowest OSs. 

The resulting OS for the CD-drives are shown in fig. 6. 
Even though the 0% cover a larger area in the Nyquist 
plane compared to the circles, the formers are narrower, an 
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important property which can be exploited by algorithms 
for mixed-p synthesis. 

In order to find the multiplicative complex uncertainty 
weight, W,(s), a rational transfer function is fitted to the 
radii of semicircles constituting the 0% divided by the 
nominal model C(s). Only magnitude is fitted as the phase 
is not relevant for complex uncertainties. Finding the mul- 
tiplicative real uncertainty weight implies fitting a rational, 
stable, minimum phase in both magnitude and phase, which 
is not always trivial. When it comes to the controller syn- 
thesis, the uncertainty weights should generally be fitted to 
a low order transfer function. 

Deterministic method 
The deterministic method for obtaining the nominal and un- 
certainty models can therefore he summarLed as follows: 

Find the 1st set of narrowest OSs at each frequency 
point which contains all the obtained Nyquist points. 

Fit a rational transfer function to the center of the 1st 
set of OS yielding the nominal model G(s).  

Find the 2nd set of narrowest 0% with center de- 
scribed by G(s) containing at the same time all the 
obtained points at the corresponding frequency point. 

e Fit a rational uansfer function to the OS's width from 
the 2nd set divided by the nominal model, yield- 
ing the multiplicative complex uncertainty descrip- 
tion W,(s), (only the magtinude is fitted). 

Fit a rational stable and minimumphase transfer func- 
tion to OS's length from the 2nd set divided by the 
nominal model, yielding the multiplicative real un- 
certainty description W,(s). 

Fig. 7 shows the center of the first set of OSs (solid lime) 
and the fitted nominal model, G(s), (dashed). Due to the 
accurate fit it can he hard to discern the bodeplots. 
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Figure 7: OS's center of 1st set (solid) and fitted nominal model 
(dashed). 

Fig. 8 shows the measured and fitted multiplicative complex 
pembations. It can be observed a step in the magnitude at 
100[Hz] due to the a difference in the accuracy of the the 
methods used to measure the uncertainties. It is not cho- 
sen to fit the higher order dynamics around 500 in order to 
preserve a low order uncertainty weight at the expenses of a 
slighty more optimistic uncertainty weight. 
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Figure 8: Measured and fitted mutiplicative complex prturba- 
tions. 

Fig. 9 shows the measured and fitted multiplicative real per- 
turbations. It is not chosen to fit the phase variations around 
30[Hz] as it is not realistic that the mixed-p algorithm will 
synthesize a controller where the Nyquist plot of the open 
loop will precisely surround - 1 at 30 wl. 

- CI 

Figure 9 Measured and fitted mutiplicative real pemrbations. 
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4 p-synthesis 

All the existing algorithm for p-synthesis are based on F L  
synthesis, see e.g. [DGKF89], although considerably more 
complex and numerically involved. As mentioned above, 
a synthesis procedure based on the uncertainty model pro- 
posed in this paper relies on mixed p-synthesis, i.e. op- 
timization for systems with both complex and real uncer- 
tainties. Examples of algorithms for mixed p-synthesis 
are [YD90, YND921 and [TCASN95]. The latter one, 
which involves solving a series of scaled DK-iterations is 
used in the sequel. 

Fig. 10 depicts the control configuration with structured 
multiplicative input uncertainty. The task of the position- 
ing controllers in CD players is to minimize the distance 
between the position of the focus point, which is the out- 
put of the plant, G(s), and the position of the signal layer, 
w,, where the information is contained. The performance 
weight, W,t (s), which is the inverse of the desired sensitiv- 
ity function is therefore placed at the output. W p  can be 
interpreted as a complementary sensitivity weight, which in 
this configuration bas been placed before the plant to con- 
trol. EZ is a suitable small quantity such that the interaction 
between the disturbances w1 and wz is reduced. 

1. Nominal performance: 

NP: % ( N Z Z ) = ~ A ~ < ~ ,  Vw, and NS 

2. Robust stability: 

RS:pA(Nll)<l,  Vm, and NS 

3. Robust performance: 

A 0  
0 AP 

RP:pi (N)<I ,  Vm,B= [ ] and NS 

A p  is a full complex matrix used for analysis of robust per- 
formance. 

5 Simulations 

The control configuration in fig. 10 was utilized to synthe- 
size two controllers, one with the mixed-p algorithm, and 
the second with the DK-iteration algorithm which handles 
complex perturbations. A maximum order of 7th degree 
was chosen for the D-scales fitting and the best controller, 
in terms of robust performance, was selected among 10 it- 
erations. The results are listed below: 

Table 1: Comparison between the mixed-p and DK controller 

Figure 1 0  Control configuration with smcmred multiplicative 
input uncertainty. 

The entire open Imp system can be represented as a par- 
tioned matrix, as shown in eq. 3, 

where the input is acolnmn vector [UA w U IT and the output 
is also a column vector given by b~ I "IT. The perturbations 
are "pulled-out" of the system and are included in a block- 
diagonal matrix, A, normalized such that 11 A 11& 1. The 
task of the algorithm for mixed-p synthesis is to find a sta- 
bilizing controller K, which satisfies following conditions, 
where N(s) is the result of the lower fractional transforma- 
tion of the plant and the controller, N(s) = F,(P,K). (NS 
stands for nominal intemal stability). 

Figure 11: Robust performance for mixed -&olid) controller 
and DK conmller(dasbed) 

As it can be seen from the list, it was not possible to find a 
controller with the DK-iteration algorithm which meets the 
robust performance requirement. Fig. 11 shows a plot of 
&N) along frequency. The DK-iteration algorithm does 
only handle complex perturbations and treats the "Olympic 
stadiums" as circles leading inevitably to a more conserva- 
tive design of the controller. However the mixed-p algo- 
rithm is able to take benefit of the shape of the "Olympic 
stadiums" and turns them such that the perturbed plant is 
furtbest away from the instability point. 
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A simulation of both controllers was performed in order to 
illuminate the difference in performance between both con- 
trollers. It was chosen to simulate the focus loop with the 
nominal plant. The disturbance wz was removed and W I ,  

which is the position of the signal layer of the CD was com- 
posed by a sinusoid where the rotation of the CD was set to 
5.55@]. It was assumed that the venical deviation of the 
CD was 50 pm with a second harmonic of less amplitude, 
7pm. Furthermore, some frequency limited noise was added 
such that the simulation was more realistic. The upper sub- 
figures in fig. 12 show the focus error, to the left, and the 
coutrol signal, to the right of the mixed-p controller. The 
focus error of the DK controller is shown in the left lower 
subfigure and its control signal in the right lower subfigure. 
It can be clearly appreciated that the mixed-p controller can 
better cope with the disturbances as a result of a less wn- 
servative synthesis of the controller. 

Figure 12: p -K(upper subfigures), DK (lower subfigures). 

6 Conclusion 

In this paper, a deterministic uncertainty modeling proce- 
dure has been proposed. The procedure has been applied 
to data for a number of CD drives with varying dynamical 
properties. 

One of the characteristics of the system in this case study 
is that it has a resonancy which can vary from specimen to 
specimen. Using unstructured uncertainty descriptions to 
capture this type of variation, invariably leads to conserva- 
tive results. The main reason for this is that there always 
will be a phase uncertainty at the average resonance fre- 
quency of close to 180 degrees. This means that the smallest 
circle (unstrnctured uncertainty description) that will cover 
all occurences will have a diameter of close to twice the 
amplitude of the resonance peak. This is in huge contrast to 
the actual robustness problems involved - in fact a very large 
gain can (and should) be used in a wide range of frequencies 
throughout the resonant area. 

Although the proposed method still uses a 'black box' a p  
proach to uncertainty modeling, the obtained results shows 
that this problem with resonance peaks can be largely alle- 
viated by the modeling procedure suggested. 

In fact, it is the belief of the authors, that the conservatism 
involved with uncertainty modeling of resonant systems can 

almost be removed, if an iterative loop is applied to the syn- 
thesis. The idea would be to rotate the 'olympic stadiums' 
in such a way that the system and the compensator together 
would place observed points of uncertainty close to the sta- 
bility margin. In that case, no performance would need to 
he sacrified at the cost of overly robustness. 

Needless to say, deterministic uncertainty modeling re- 
quires that measurements can be obtained that @d the un- 
certainty space appropriately. If the measurements are too 
sparse, such a method might need to be complemented by 
some statistical extrapolation. In the case study presented, 
though, it turned out that considering a few well-chosen 
samples of different drives could provide a fairly precise 
unceminty model. 
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