
Pmeeedings of the 41st IEEE 
Conference on Decision and Control 
Las Vegas, Nevada USA, December 2002 FrM12-1 

Reliable Control using the Primary and Dual Youla 
Parameterizations 

Henrik Niemann 

Abstract 

Different aspects of modeling faults in dynamic systems 
are considered in connection with reliable control (RC). 
The fault models include models with additive faults, 
multiplicative faults and structural changes in the models 
due to faults in the systems. 

These descriptions are considered in connection with re- 
liable control and feedback control with fault rejection. 

The main emphasis is on fault modeling. A number of 
fault diagnosis problems, reliable control problems, and 
feedback control with fault rejection problems are for- 
mulatedkonsidered, again, mainly from a fault modeling 
point of view. 

Reliability is introduced by means of the (primary) Youla 
parameterization of all stabilizing controllers, where an 
additional loop is closed around a diagnostic signal. In 
order to quantify the level of reliability, the dual Youla 
parameterization is introduced which can be used to ana- 
lyze how large faults can be tolerated without losing e.g. 
stability. 

1 Introduction 

Models of faults will depend on where the fault models 
are going to be used. A number of faults can naturally 
be considered both as additive faults or as multiplicative 
faults. However, a random choice might not be optimal. 
The fault model needs to be selected with respect to the 
application, i.e. fault diagnosis, reliable control or feed- 
hack control with fault rejection. 

In the past, additive fault models have been the most pop- 
ular, especially in connection with fault diagnosis. Mod- 
eling e.g. an actuator fault as an additive fault will in 
general be very useful in connection with fault detection 
andlor fault isolation. In connection with closed-loop 
systems, an actuator fault might result in instability. Us- 
ing an additive fault model description in this case, the 
fault will be considered as an external signal entering the 
system. The fault signal will therefore not affect the sta- 
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bility of the system. This small example indicate clearly 
that the description of possible faults in a dynamic sys- 
tem needs to be selected in very close relation with the 
application of the fault descriptiodfault model. 

In this paper, three types of faults/fault models will be 
considered. The three types are as follows: 

additive faults 

multiplicative faults - parameter faults 

system structural changes 

The above fault models can be considered in connection 
with the following applications: 

fault detection, fault isolation and fault estimation. 

e reliable control, i.e. the control system C M  handle 
faults in the system without resulting in an unsta- 
ble closed loop system. 

feedback control with fault rejection, i.e. the effect 
from the fault is minimized in the closed loop by a 
pyiback controller. This is equivalent with robust 
f tdback controller design. 

It should be pointed out that this paper is not a survey 
paper for different reliable control methods, or of robust 
control methods. These areas are very well described in 
a large number of papers and books. Without going into 
details, let us mention the books by Basseville and Niki- 
forov [I], Gertler [SI and by Chen and Patton [4] for a 
good introduction to the area of fault diagnosis. The pa- 
per by Blanke et al. [Z, 31 and by Patton [7, 81 and the 
references herein are good introductions to the area of 
reliable control. Most of these papers describe different 
concepts for RC. However, in the past years, also a num- 
ber of theoretic results has been presented in this area, 
see e.g. [lo, 12, 13, 14, 15, 171. The area of robust con- 
trol has been investigated in a large number of books and 
papers. Let us only mention the books by Skogestad and 
Postlethwaite [91 and by Zbou et al. [16]. 

The focus in this paper will be on using different fault 
models in connection with RC. The main results of this 
paper is to give an overview of what the various design 
problems look like depending on the type of faults. RC 
bas already been considered in connection with additive 
faults in [IO]. This case will therefore not be considered 
further in this paper. 



2 Definitions and System Setup 

2.1 System Setup 
Consider the following state space description of a gen- 
eralized 2 x 2 system, 

where d E R' is a disturbance signal vector, U E 72"' 
the control input signal vector, e E Rq is the external 
output signal vector to he controlled, and y E RP is the 
measurement vector. 

Further, let the system he controlled by a stabilizing 
feedhack controller given by: 

U = K(s)y (2) 

In the cases where we want to detect, isolate andor esti- 
mate parameter changes or uncertainty variations in the 
system, the fault, the system can he described by: 

z = G,,w + G,dd + GIuu 

C M  : e = G.wW + Gedd + G.,u (3) { y = G,,w + G,dd i G,,u 

where w E RkW and z E Rkz are the external input 
and output vectors. The connection between the external 
output and the external input is given by 

w = A z  (4) 

where A represent the multiplicative faults in the sys- 
tem. Note that A can represent parametric fault as well 
as model uncertainties (A = f3 will be applied in the fol- 
lowing to in connection with the parametric fault case.) 
It should be pointed out that a direct modeling of uncer- 
taintiedparameter variations using A will not in general 
give useful results. Weighting matrices need to he in- 
cluded in connection with A for obtaining good designs. 
Closing the loop from w to z in C M  by using A, we get 

CA = F U ( C M , A )  

where FU(X, Y) is the upper Linear Fractional Trans- 
formation (LFT) of (X, Y) .  see [16]. The lower LFT of 
(X, Y) is given by Fi(X, Y). 

Faults might change the structure of the system. One 
example is a sensor falling out, which will reduce the 
number of measurement signals. This will result in multi 
model systems or hybrid models. Based on a structural 
change of the nominal system in (1) due to faults, the 
system takes the following form: 

where 7 indicates a change in the transfer function. Note 
that i = 0 is defined as the nominal model, CS, = C. 

2.2 Definitions 
Based on the three different models given above, anurn- 
her of definitions are now given. The definition of stable 
feedback control and robust feedback control are given 
in [16]. Reliable control is defined in [ 2 ] .  

Let us give three definitions in connection with feedback 
control and reliable control. 

Definition 2.1 Given a nominal dynamic system C and 
a feedback contmller Cc. The feedback conrroller C c  is 
said to be a stabilizing feedback controller ifand only if 
the closed loop transferfunctions of the intercormection 
Fi@, C,) is intemlly  stable. 

Definition 2.2 Given a dynamic system CA and a feed- 
back conrmller Cc.  It is assumed that A E a repre- 
sents the model uncertainty. The feedback conrmller CC 
is said to be a robustly stabilizing feedback controller 
if and only if the closed loop transfer funcrions of the 
interconnection Fl(Ca, C,) is intemlly  stable for all 
A E a. 

Definition 2.3 Gisen a set of dynamic sysfems C a  , i = 
0,. . . , k, and a feedback conrmller C c .  The feedback 
contmller C c  is said to be a reliable feedback controller 
if and only if the closed loop transfer functions of the 
inrerconnecrion 31(css, E=), i = 0,. . . , k is internally 
stable. 

3 Reliable Control 

Just as in connection with fault diagnosis, the reliable 
control problem will depend strongly on the type of 
faults that can appear in the system. In this paper, 
the various reliable control design problems will he de- 
scribed for the three different model structures given in 
Section 2. Especially in connection with RC for systems 
with structural changes, the solution (the selected con- 
troller structure, type etc.) will depend strongly on the 
specific case. There does not exist any general method 
with explicit design formulae that can handle the gen- 
eral case. Much better design results can be obtained by 
using dedicated design methods. 

3.1 The Youla Parameterization 
Before considering the three different RC design cases, 
the (primary) Youla parameterization is shortly intro- 
duced. The Youla parameterization will he applied in 
connection with RC in the following. The Youla param- 
eterization has also been applied in connection with RC 
in [lo, 171. 

Let a coprime factorization of the system G,,(s) 
from (1) and a stabilizing controller K ( s )  from (2) he 
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given by: 

G,, = N , M - ~  = M - I N " ,  N,, M,N",M E ax, 
K = Uv-' = @-la, U, v, 0, v t EN, 

(6) 
where the eight matrices in (6) must satisfy the double 
Bezout equation given by, see [16]: 

Based on the above coprime factorization of the system 
G,.(s) and the controller K(s ) ,  we can give a param- 
eterization of all controllers that stabilize the system in 
terms of a stable parameter Q(s), i.e. all stabilizing con- 
trollers are given by [ l l l :  

K(Q) = u(Q)V(Q)-' (8) 

where 

U(Q) = U + MQ, V(Q) = V + NuQ, Q E E'", 

or by using a left factored form: 

K(Q) = v(Q)-'C(Q) (9) 

where 

0 (Q)  = fl+ QA?, v(Q) = i /  + QN", Q E RH, 

Using the Bezout equation, the controller given either by 
(E) or by (9) can be realized as an LFT in the parameter 
Q, 

K(Q) = F ~ J K , Q )  (10) 
where JK is given by 

Introducing the transfer function from the disturbance 
signal d output y given by Gyd from (1) in connection 
with the coprime factorization of G,, in (6), we obtain 
the following relationship: 

Reorganizing the controller K(Q) given by (10) results 
in the closed loop system depicted in Figure 1, [ 1 I]. 

The main observation which shall be exploited in the 
solution to the reliable control problem, is the follow- 
ing very simple expression for the transfer function from 
faults to measurements in terms of the parameter Q: 

y = * - ' ( & d + f i * U )  

= (V+N,Q)Ndd 

where (7) bas been exploited 

hT&+ 
Figure 1: Controller structure with parameterization 

3.2 RC for Systems with Multiplicative Faults 
In this case, the closed-loop stability can be affected by 
the multiplicative faults, if G,, depend on the multi- 
plicative faults. A Youla parameterized controller K(Q) 
is applied, where the nominal controller K(0)  = KO is 
designed for the nominal system. The Youla parameter 
is then applied for obtaining RC, i.e. Q needs to stabi- 
lize the closed-loop system when a fault has appeared 
in the system. The stability of the closed loop system 
requires stability of the nominal closed-loop system and 
closed-loop stability of a loop where both Q and the mul- 
tiplicative faults A are included, [ l l ] .  The stability of 
the closed-loop system is satisfied by the design of the 
nominal feedback controller K(0) .  The other closed- 
loop system that needs to be stable is given by 

s ( Q )  = ( I  - QS(A))-' (12) 

where S(A) is the dual Youla parameter, 1111, depend- 
ing on the multiplicative faults A. The dual Youla pa- 
rameter S is a parameterization of all systems stabilized 
by a given controller K(O), (111. The dual Youla pa- 
rameter S or s can be directly estimated from known 
signals. Consider the system setup in Figure 1, the open 
loop transfer function from r to i is the transfer func: 
tion S, [IO, 1 1 ] and the closed loop transfer function S 
is the associated closed loop transfer function. This is 
important. because it makes it possible to estimate S or 
S which are measures for the faults in the system. 

It is required that S is stable to guarantee closed-loop 
stability. Combining the Youla parameterization with the 
dual Youla parameterization, it is not a condition that Q 
and S need to be stable to guarantee closed-loop stabil- 
ity. Q and S just need to satisfy that the closed-loop 
system given by (12) is stable, [ I l l .  S(A) take the fol- 
lowing form in the general case: 

S(A)  = ~G,,A(I-[G,,+G,,UA?G,,]A)-'G,,M 
(13) 
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In connection with (13). it is important to note that the 
stability condition of S andor of S(Q) in (12) for satis- 
fying that the faulty closed loop system is stable, is only 
valid if the faulty system is still detectable and stabiliz- 
able from the specified input signals U and output signals 
y. This is a standard condition in connection with RC 
systems. If the faulty system is not detectable and/or sta- 
bilizable, additional actuators andor sensors need to be 
included in the system to satisfy these two conditions. 
It should be pointed out that the RC setup considered 
in this paper, does not restrict the possibility to include 
more general controller architectures, where the number 
of actuators andor sensors can be changdmodified in 
connection with faults. This subject, however, will not 
be described in this paper. 

In the general case, the equation for S(A) given above is 
quite complicated. S(A) needs to be derived explicitly 
in every single case in order to reduce the complexity of 
S(A). Consider two simple cases, where the multiplica- 
tive faults are placed at either the input to the system 
(actuator faults) or at the output to the system (sensor 
faults), i.e. the system given by (3) takes the following 
form 

Ged(A) Geu(A) ) ~ ( g;; Geu+GeuA ) 
Gvd(A) GYU(A) Gyu + G , d  

for multiplicative faults at the input. The system given 
by (3) takes the following form for multiplicative faults 
at the output 

(14) 
( 

The dual Youla parameter S is then given by: 

S(A) = #"A(/- UfiuA)-'M (16) 

for multiplicative faults at the input and 

S(A) = &A(/ - N=GA)-'Nu (17) 

for multiplicative faults at the output. 

It is important to note that if S is stable, we do not need 
a Q-parameter to stabilize the system. In this way, S can 
be used for analyzing which faults are admissible and 
how large they can be before the closed-loop system will 
become unstable. 

In Table I ,  S bas been calculated for a number of differ- 
ent types of multiplicative faults. 

with the feedback controller K(Q),  we get the following 
closed loop transfer function, see [61 

e = Ted(8)d (181 

where 

Ted(S) = Ged(A) + Geu(A)(u + MQ) 
X ( ( V  - Gyu(A)V) + (Nu - Gyu(A)M)Q)-'Gyd(A) 

with 

Ged(A) = Ged + GewA(1- GxuA)-'Gzd 
Ge,(A) = Geu + GewA(1- GzwA)-'Gm 
Gyd(A) = Gyd + GywA(1- GzwA)-'Gzd 
GYu(A) = Gy, + GywA(1- GzwA)-'Gzu 

Now, let us again consider the two cases with multiplica- 
tive'input faults and output faults. The general system in 
(3) is then given by (14) and (15), respectively. The gen- 
eral closed loop transfer function in (18) is given by 

&(A) = Ged + Geu(I+ A)(U + M Q )  

(I - fi=A(U + M&))-'A?Gyd 
(19) 

for multiplicative faults at the input and 

Ted(A) = G,d + GeuAt(U + & & / ) a  

(I - ANu(U + QG))-'(I+ A)Gyd 
(20) 

for multiplicative faults at the output, respectively. 

Using a standard setup formulation, we get the follow- 
ing open loop transfer functions for the design of the Q 
controller in the two cases (see Figure 2 for the standard 
setup). For the input fault case, we have 

So far, the stability part with respect to multiplicative 
faults has been treated. This is the most important part 
of the RC. However, it will also in some cases be pos- 
sible to design the RC controller (the Q controller) with 
respect to both closed-loop stability as well as closed- 
loop performance. Closing the loop of the system in (3) 

respectively. 

It is possible to combine reliable control with fault iso- 
lation. It is then possible to design a number of Q con- 
trollers, one for every single fault case and then select a 
specific Q controller when a fault appear in the system. 
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System description, Gyu(A) 

Table 1: The connection between different system multiplicative faults in terms of A and the dual Youla parameter S. 

The dual Youla parameter, S(A) 

Figure 2: me standard semp for design of Q for systems with 
multiplicative faults 

c Y u ( a )  = ( I  + A ) G ~ ~  

3.3 RC for Systems with Structural Changes 
This is the most relevant problem in COMeCtiOn with RC. 
From a feedback point of view, a fault in a closed-loop 
system will in most cases change the structure of the sys- 
tem. However, in many cases, these structural changes 
can be described by using LlTs as considered in the mul- 
tiplicative fault case. 

In the following, let us just consider the system given 
by uansfer functions described by (5).  It is further as- 
sumed that the system can only be in the normal (nom- 
inal) mode and in one abnormal mode. The abnormal 
mode is given by: 

S(A) = a A ( I -  NOA)-’N 

The closed loop transfer function for the nominal system 
C and C s  when the feedback conwoller in (2) is applied 

are given by 

From the closed loop transfer functions in (24). it is clear 
that it is not possible to do RC if the change is in G.d 
andlor G,,: For doing RC, we need to observddetect 
the change. Instead, if there is also a change in G,, 
andor Gyd at the same time, we might be able to make 
RC for the system. 

Following the line from the above section, we can again 
calculate S as a function of the system changes and use 
this for obtaining RC. The structural changes of G,, can 
be described in the following way: 

8,” = GVu+(eyu-Ggu) 
= G y u + A  

From Table 1, we have that 

S = Md(I - UMA)-’M 

Using d = Cy” - G,, in S, we get directly 

s = (hiG,, - N”)(V - rxyu)-’ 

Q needs again to be designed such that 

S(Q) = (I - QS)-‘ 

is stable. 

As a direct result of the above analysis, is that systems 
with structural changes can also be handled as systems 
with multiplicative faults. Therefore no further results 
will be given here. 
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4 Conclusion 

In this paper a common framework based on linear frac- 
tional transformations has been introduced, which facili- 
tates modeling of additive faults, multiplicative faults, as 
well as faults that change the model structure. 

By applying the (primary) Youla parameterization, an 
additional controller parameter has been introduced as 
the main tool to achieve reliability. A feature of the 
Youla parameterization is that it automatically includes 
a diagnostic signal. 

In order to quantify the reliability of a given configu- 
ration, the dual Youla parameterization has been intro- 
duced. The corresponding parameter reflects how large 
faults can be handled by the RC system without losing 
e.g. stability or performance. 

Although faults leading to StruCNral changes of a system 
in principle calls for ad hoc solutions, it has still been 
possible to give general formulae for fairly rich and im- 
portant classes of structural changes. An example can be 
found in [6]. 

One aspect that has not been considered in this paper is 
the synthesis of the Q controller with respect to both the 
nominal case as well as the faulty case. The focus in this 
paper has only been on the design of Q with respect to 
some possible faults in the system. However, if we let 
the Q controller also be active in the nominal case, the 
design of Q turns out to he a multi objective design. The 
design of Q then needs to he done with respect to a dis- 
turbance rejection in the nominal case and with respect 
to closed loop stability in the faulty case. The distur- 
bance rejection design is an open-loop design of Q. This 
aspect has been considered further in [6]. 
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