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Abstract- We present a signal processing algorithm for 
making robust and simultaneous measurements in an ac- 
tive sensor, which has one or more emitters and a receiver, 
and which employs some sort of signal processing hardware. 
Robustness means low sensitivity to time and frequency lo- 
calized disturbances, and to white noise. This is achieved 
partly by using a orthogonal spread spectrum transform for 
modulating the signals transmitted from the emitters to the 
receiver, and partly by using a number of transmission chan- 
nels. The method is fast since the signals are short, and since 
the method does not rely on previously transmitted signals. 
This also means that only few calculations are needed. Fur- 
thermore, the suggested spread spectrum transform has a 
low complexity, a high numerical stability, and is easily im- 
plemented in simple signal processing hardware. The pre- 
sented method is therefore suitable for low-cost active sen- 
sors. 

I .  INTRODUCTION 

assumes the presence of digital signal processing hardware in , 

the sensor. An algorithm implemented in the hardware han- 
dles the generation of the signals to be transmitted as well as 
the post-processing of the signals after transmission. This pa- 
per present an algorithm which can handle these tasks in a way 
which makes the sensing process fast and insensitive to common 
types of noise. 

The aim is to have a method, which is fast and robust while , 
still being suitable for low-cost signal processing hardware. In ' 

this context fast means short time from occurrence to detec- ~ 

tion. Optimally, this delay is (almost) equal to the sampling 
frequency, which means that the sensor must respond to an oc- 
currence based on just a single sample. This is in contrast to the ~ 

desire for robustness, which calls for several samples to verify 
that the believed occurrence is real and not just a burst of noise. ' 

On top of this it is also desirable to have a fairly simple and ~ 

straightforward method as this reduces the requirements to the 
signal processor. Although the ratio between computing power , 
and cost has increased rapidly in the past years, DSPs and the ~ 

like are still a.comparatively expensive component in low-cost 

, 

A typical low-cost active sensor transmits a harmonic signal 
at a particular frequency, and filters the received signal to obtain 
the energy at the chosen frequency. The energy is the output of 
the sensing process and is used for various purposes. In many 
cases a thresholding is applied to this quantity to determine if 
the transmitted signal is present in the received signal, in which 
case it signifies some type of occurrence in the proximity of the 

active sensors. Consequently, it is rather important that an active 
sensor algorithm remains simple in all aspects of implementa- 
tion. Finally, the spread spectrum modulation should produce 
binary sequences to avoid the need for a digital-to-analog con- 
vener. 

B. The Presented Solution 
sensor. 

An obvious drawback of using a harmonic signal is that such 
signals are common in most environments. They appear as elec- 
trical, optical, acoustic, mechanical signals, and it is futile to 
isolate the sensor from all harmonic signal sources. Another less 
obvious problem with the above described sensor is that it does 
not respond well to short and powerful burst of noise. If the sen- 
sor is damaged, short-circuited, or subjected to extreme signal 
conditions (like a flash close to an photosensitive diode) a typi- 
cal low-cost sensor might easily interpret the situation wrongly, 
as it only cares about the energy at a certain frequency, and not 
the circumstances that caused the presence of energy. For in- 
stance, heavy white noise contains a lot of energy at all frequen- 
cies, but should not be interpreted as a.successful transmission 
of a harmonic signal. 

A .  Background on the Presented Solution 

In the present effort we construct a simple and generic method 
that can he applied in many types of active sensors with one or 
more emitters, and which complies with the requirements pre- 
sented in the previous section. We suggest a method where it is 
easy to adjust the trade-off between response time and robust- 
ness, and which has a low program complexity, high numerical 
stability, and is easy to implement. We also want the method to 
be applicable to systems with multiple emitters and receivers. 

The hasic idea of the suggested algorithm is to combine 
spread spectrum modulation with a multiplicity of transmission 
channels, i.e. the channels are separated in the 'spread spectrum 
domain' or code domain (just like radio broadcasting is a separa- 
tion in the frequency domain). To perform the sensing a number 
of emitters simultaneously emits a single ping, like a sonar. This 
ping is actually short, typically 16 to 64 samples long, spread 
spectrum sequences. Each emitter has its own sequence, and all 
the sequences are different from each other and each revresents 

This paper presents a method for increasing the robustness 
of a sensor by purely algorithmic means. Such an approach 

a channel. Each receiver then receives a mix of all the signals, : 

which are processed to determine if there has been an occur- , 
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Fig. I .  The Rudin-Shapiro transform is used to multiplex in the code domain. 
Here three channels are used, one for each emitter, and the remaining channels 
are used to increase the robustness. Note that this figure does not include the 
electronics and the other necessary signal processing algorithms. 

rences (based on the intensity of the ping in each channel) to 
which the sensor should respond. The method reported in this 
paper applies to the receivers individually, so in the following 
only one receiver is considered. 

Since the channels are not separated in neither the time nor 
the frequency domain any noise occurrences localized in time 
or frequency will affect all channels approximately evenly. The 
idea is then to use only a few channels for actually transmis- 
sion while the remaining channels are used for detecting noise. 
That is, no ping is emitted into these channels. The algorithm 
is thereby capable of detecting when the noise is such that the 
transmission is corrupted beyond recognition. At the same time 
the modulation also increases the immunity of the short signals 
transmitted in the individual channels to time and frequency lo- 
calized noise. By changing the length of the short signals it is 
possible to easily change the trade-off between response time 
and robustness. 

11. METHOD FOR SPREAD SPECTRUM MODULATION I N  
MULTIPLE CHANNELS 

One of the key elements in the algorithm is the modulation 
method. We propose to use the Rudin-Shapiro transform (RST) 
for this purpose, since it has a series of useful properties (see 
subsections 11-A and 11-B). 

The sensing starts with a set of very simple digital signals to 
indicate which channels are used for pinging. The signals are 
zero sequences with a 1 at the location of the chosen channel. 
In Fig. 1 three such signals are shown. An RST of such an al- 
most vanishing signal produces a binary spread spechum signal 
with a number of samples equal to the original sequence. These 
signals are transmitted by a number of emitters to the receiver 

Fig. 2. The 291h basis vector of P@) and the amplitude of its Fourier transform. 

through the sensor environment, and the received signal is now 
demodulated with the RST. If the receiver behaves in a linear 
fashion and because of the orthogonality properties of the RST 
the entries in the demodulated signal corresponding to the cho- 
sen transmission channels now holds the energy of the received 
pings (yo holds the energy from the first emitter, yi holds the 
energy from the second emitter, and so on) while the remaining 
entries up toy,, are zero. 

In any real life application there is obviously noise present, 
and thus the remaining entries are not zero. However, they al- 
ways remain unaffected by the transmission from the emitters, 
and can therefore be used to determine properties of the current 
noise. This information can in turn be used to validate the quan- 
tities obtained from the transmission from the emitters. Two 
such methods are reported in subsection 111-A and 111-B, respec- 
tively. 

A .  Rudin-Shapim Transform 

The RST is defined through the remarkable Rudin-Shapiro 
polynomials, introduced in 1951 by H. S. Shapiro in his mas- 
ter's thesis [I], and published in 1959 by Rudin [2]. The RST is 
a symmetric, orthogonal Hadamard 2J x 2J matrix, for J E N, 
where each row consists of ztl's and is the coefficients of a flat 
polynomial. Hence these binary sequences constitutes an or- 
thonormal basis for R* with basis vectors consisting of spread 
specmm sequences of =t I ' S .  In figure 2 is an example of such 
a basis element and its frequency response. An introduction to 
the RST can be found in [3], [4], and [ 5 ] .  

Since the Rudin-Shapiro transform decomposes a signal into 
a linear combination of spread spechum sequences the trans- 
form coefficients of any time or frequency localized signal will 
always have a slow decay. This means that if a signal is sub- 
jected to a time or frequency localized burst of noise and sub- 
sequently Rudin-Shapiro transformed the energy of the burst is 
distributed fairly evenly among all the transform coefficients, 
while the total energy of the burst is unchanged because the 
transform is orthogonal. Effectively, the impact of the burst of 
noise is changed from being local and big to global and small. 

The unitarity of the transform also allows easy separation of 
several signals. If, say, three signals of different and unknown 
amplitude are mixed (as a linear combination) into x, and the 
three signals are scaled versions of the first three rows in the 
RS matrix, an RST will immediately reveal this; the first three 
coefficients of the transformed signal y = RST(x) are the ampli- 
tudes, while the remaining coefficients are zero. Consequently, 

J 
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an orthogonal transform provides a number of channels equal to 
its matrix dimension through which information can be trans- 
mitted independently. Also, note that a normally distributed 
stochastic process is still normally distributed after a orthogo- 
nal transform. 

B. Imolementation o f  the Transform 

fulfilled, it is conversely concluded that no ping (of sufficient 
magnitude) was received. 

Obviously, the risk of detecting a signal when none was re- 
ceived (an FP decision) decreases with large values of a. Vice 
versa, when a is small, the risk of ignoring a signal that was ' 

actually received (an FN decision) is also small. 

The properties of the RST presented above makes the trans- 
form interesting in a number of applications. But for the trans- 
form to he really useful a fast version is needed. Multiplication 
by a matrix is an O ( N 2 )  operation, which for longer signal can 
become a problem in real-time applications. Fortunately, there 
exists a very simple and fast RST implementation. 

The fast RST of size 2' x 2' consists of J intermediate steps 
which are applied sequentially. Each intermediate step is a filter- 
ing with a low pass filter [ 1 -11. 
However, the filters are not stationary. The minus 'moves' be- 
tween the four filter taps as the filtering occurs, effectively mak- 
ing the low and high pass filters swap places and do time rever- 
sals. This continues interchange of the low and high pass fil- 
ters can also be regarded as a simple explanation for the spread 
spectrum property of the transform. To get rid of the square root 
the scaling factor l /& can be applied as 112 after every other 
intermediate step (since the steps are linear). Consequently, a 
fast RST requires exactly J . 2' additions and subtractions, and 
512 multiplications by 112, thereby reducing the complexity to 

I ]  and a high pass filters [ 1 

A .  First Validation Method 

The purpose of the first method is to determine the optimal ~ 

threshold a. We define an optimal threshold as that value of 01 
for which the probability for a worst-case FN decision based on ~ 

7(01) equals the probability for an FP decision based on 7(01). ~ 

A worst-case FN decision is understood as an FN decision in 
the presence of the faintest received signal which should be de- ' 
tected. It is straightforward to modify the approach below in 
order to meet this compromise with a preference to either a low 
FP or a low FN probability. 

The reader is reminded that if N stochastic variables , 
( Y ~ ] I c = I  ...N are normally distributed, Y, E N ( 0 ,  I ) ,  then : E,"=, Y; belongs to the x 2 ( N )  distribution, which is a special ~ 

case of the r distribution, x 2 ( N )  = r (q, 2). This means that : 
the probability of an FP decision is 

PFp(O1) = P(Z0 > a?) 

where 

1 
ZO = Y,' E r (:,2) and 2 = - 

N k  

and the probability of an FN decision is 

'" 
O(Nl0gN) .  

inverse; once the RST is implemented, so is its inverse. 

Y 2  E r 
Finally, note that a symmetric, orthogonal transform is its own k=l 

We report two different methods for using the extra channels 

statistical model for balancing the probability ofmaking a false 
positive (FP) decision, i.e. responding to a non-existing occur- 
rence, and a false negative (FN) decision, i.e. not responding to 
an occurrence. The second method is an ad hoc approach, which 
attempts to address of the problems in the first method, 
However, while the first method is theoretically founded, the 
second method is to some extend empirical founded. It is impor- 
tant to note that both methods are designed such that, in order to fiP(m) = /k hofi dzodr, A = ((ZO. I )  : Z o , I . Z o  - > 01 
lower the response time, a single ping is enough for validation. 

to increase the robustness of the sensor. The first method is  a where u2 is the true (and unknown) variance ofthe noise. Rmm 
is the worst-case SNR, i.e. Rmax = YIOW/U, where ylOw is the 
lowest detectable signal level of yo. Note that this makes Rman 
the 'real' SNR since Yo is (for the time being) assumed to be 
deterministic. Rmax would typically be a design parameter Or 

adjustable by the user of the sensor. Now, the probability distri- 
bution function fip can be computed 

Both methods are based on the SNR, that is the relations be- 

remaining channels. To have the simplest method the pinged 
channels are treated individually. Therefore, in this section we 
assume yo to.be the pinged channel, and yt through JJN to be all 
the non-pinged channels. The basic observation for both meth- 
ods is that a good estimate of whether the emitted ping is present 
in the received signal is the ratio between signal and noise, i.e. a 
test on the form 

tween the intensity in the pinged channels and the intensity in (2) 

Introducing polar coordinates, the integral in (2) becomes 

I N - ]  e-r(cosO+sin R )  I )' drdO . ( 3 )  

The double integral can be separated into two single integrals by 
the substitution r = ?/(cos0 + sinO), that is, 

r(t)r( 4 )  cos 0 sinN-2 o 

wnerr i v  IS me numDer or res1 cnanneis. Baslcaily, 11 Y IS ful- K I  = r V c - 5  d f ,  
r(f)r(;) o filled, it is assumed that a ping was received, and if 7 is not 
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Fig. 3. The probability far making an FP decision for a given SNR threshold a 
and for N = 13. 

Worst-case SNK Kmax 

Fig. 4. 
R,,, and the threshold value (I in the test 7((1). Here N = 13. 

The curve shows the relationship between the worst-case SNR d u e  

Finally, it can be shown that the standard substitution f = tan k 
leads to the following algebraic integrand 

Even though the integral in ( 5 )  is algebraic, it can not be resolved 
analytically. However, numerical experiments show that e.g. an 
adaptive recursive Newton Cotes 8 panel rule performs better 
on (5) than on (4). The resulting probability function for N = 13 
is shown in Fig. 3 ( N  = 13 is chosen to match the experimental 
signals in Section IV). 

Exploiting the probability function P~p(a) which can be eval- 
uated numerically by (5) it is straightforward to get a calibrating 
curve for a under the constraint that f ip = PFN. To that end, we 
start with a value o f a ,  and numerically determine P~p(a). Then 
the inverse ofthe x 2 ( N )  distribution function applied to &(CY) 
yields the ratio between R,,, and a. This relationship is shown 
in Fig. 4. While this curve is valid only for deterministic yo, the 
same type of curve can be generated under the assumption that 
yo is under influence of a stochastic process. In that case the 
curve is asymptotic to a horizontal line for small values of R,,, 
(see ~31).  

Fig. 5. The curve shows the relationship &tween the worst-case SNR value of 
R,, and the threshold value U in the test 7(a) .  The dashed lines shows the let7 
and right asymptotes. Note that there is a unique minimal value of PFP = 4N 
at the top ofthe curve. The parameters are N = 13, p = 0.01, a = 3. 

E. Second Yalidation Method 

In practice the first validation method will prove difficult to 
use, however. For a fixed instance of noise the SNR vanes with 
the energy in yo, i.e. the intensity of the transmitted ping. This 
causes especially heavy noise bursts to occasionally be accepted 
as useful measurements. Since we want to detect noise inde- 
pendently of the transmission, we need to adapt the threshold 
according to yo, or, alternatively, adapt the test. We have chosen 
the latter, and have altered the test ( I )  in a heuristic manner. We 
suggest to include an additional By; on the right side (which al- 
ters the test most significantly for large yo), where the constant 
p depends on the dynamic range ofyo. To further simplify the 
test we use this opportunity to lose the division by N .  That is, 
we suggest to change the test to 

k= I 

For this test to be useful we must have fi  << 1, and then B 
is important only when yo is of a magnitude at least equal to 
the magnitude of the noise. A big f l  makes the inequality more 
sensitive to heavy noise burst (where yo as well as y~ throughyn, 
are large). But the limit of yo for which the inequality always 
evaluates to false is lowered with a big B.  In a low noise scenario 
the sum is negligible, and the inequality is then false when B > 
a/yo, approximately. Thus, a good choice is p = or/y,,, where 
y,, is the dynamic range of yo. The a factor still adjusts how 
much we want to trust the measurements classified as useful, 
and is thus very application specific. 

One can also determine the corresponding PFP = f i ~  curve, 
which is seen in Fig. 5 .  Note, that this calibration curve has 
a left, horizontal asymptote corresponding to the limiting case 
&p = PFN = f as the SNR goes to zero. In a doubly logarith- 
mic plot, it also has a right asymptote, which in fact is the curve 
U = ( B O .  SNR)-'. 
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IV. RESULTS 

Some result of applying the spread spectrum modulation and 
validation methods on real data is presented in this section. We 
have tested the methods in a physical setup, which is described 
in the next subsection. The outcome of this is presented in the 
following subsections. 

A .  Test Setup and Test Signals 

The test data is obtained with three infra red diodes and one 
infra red photodiode. The are all located in the same plane and 
facing the same way, such that transmission from emitters to 
receiver occurs by reflection. The diode driver electronics are 
connected to a PC via 12 bit sampling hoards. The algorithms 
are implemented in ANSI C for real time execution. The RST 
modulation produces 16 samples per ping (allowing for 16 chan- 
nels), and these samples are continuously transmitted at 2.6 kHz 
in 4 ps wide pulses. The ping rate is thus 163 Hz. The test data 
intentionally has a low SNR, since we want to investigate the 
behavior in noise conditions. 

Two experiments have been conducted, generating two sets 
of test signals. Each signal consists of 1060 pings (a good 6 
seconds) recorded with an objected moving in front the of the 
diodes to reflect the light. Three emitters are used, so three 
channels are occupied by transmitted signals. The remaining 
13 channels are noise channels. Since the methods applies to 
the channels individually, only one channel is examined. The 
other channels can he treated equally. Once the first channel 
is evaluated the remaining pinged channels can be evaluated at 
almost no extra cost, since the sum takes the major part of the 
computation. 

In the first test signal set only random noise is present. Any 
transient-like structure is thus a result of 'valid' occurrences, 
and not noise. In the second test signal set a noise occurrence 
have been generated by touching the driver electronics for the re- 
ceiver with a screw driver at its most sensitive point. The screw 
driver essentially works as an antenna and the result is noise oc- 
currences as seen in the second test signal. 

The two validation methods use a threshold on the ratio he- 
tween signal and noise to classify the GM. When adapted to the 
test signals at hand the first validation method is 

h 

v 8 2 

h '  

?,' 7-(ff): O(y) __ 15 2 > 0 1  
Ck=3 ?k 

.. .- . .. . . - '  ' - " '  

. . . .  

while the second method is 

E .  Applying the First Vulidution Method 

The first thing to do is determine worst-case SNR, i.e. the 
weakest detectable signal compared to the expected random- 
noise level. The weakest signal is chosen to he yl,, = 15 
(this depends on the maximum distance at which a given object 
should be detectable). Since the variance 0' is approximately 
9.1, R,,, = yl,,/o = 4.8. Using the curve for stochastic yo 
(this differs a little from the curve in Fig. 4) this yields approxi- 
mately a = 0.5 for which PFP = PGN zz 0.02. 

Samples 
h 

v 
8 2 '  ' 

h '  - - . -. ._ . - 

0 100 200 300 400 500 600 700 800 WO 1000 
Samples 

Fig. 6 .  The first validation method applied to the two fest signal sets  For each 
plot: In the middle is a graph of the yo channel with a dashed line showing 
ylow = IS. The lowermost is a graph of the corresponding O(y) (in de). The 
two lines on top show for each sample 1) when the lest T(u)  is false and 2) true. 
Here a = 0.5 (which is -3.0 in the dB scale ofthe above graph and marked by 
the dashed line) and q p  = h ii 0.02. 

The first test signal subjected to the first validation methods 
is shown in Fig. 6. 

The validation behaves as expected. For the 'no signal' part 
in the beginning T(u)  is false for almost all samples (approxi- 
mately 1 out of 50 is expected to he accepted as a useful GM). 
When the signal level approaches ylaw. which equals 15 and is 
shown with a dashed line, the validation shifts in favor increas- 
ingly more useful measurements. Again the fraction of measure- 
ments validated incorrectly is 1/50 for signal level close to yl,. 
Note that the point in time (here measured in samples) at which 
more measurements are considered useful than not useful is the 
same as where the average level of the signal is ylow/2. This 
happens around sample number 250. This corresponds with the 
notion that if the signal itself was used for validation and P F ~  
should equal PFN for the weakest detectable signal the threshold 
should be half the weakest detectable signal level. 

Now, applying the validation to the other test signal and using 
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the same parameters the result is a less gratifying. A large por- 
tion of the samples are evidently classified as useful although 
they are not. It is worth noting that the validation does not 
fail because there is no difference significant difference between 
O(y) for the useful and useless parts of the third test signal. It 
fails because the threshold is wrong. However, the threshold 
has been determined such that it complies with our notion of 
proper behavior in a random noise scenario, and accordingly it 
works fine for the signal without transients. This problem can 
be solved easily by increasing the threshold to around 20, which 
seems to separate nicely the useful and useless parts in the third 
test signal. However, the result of simply increasing the thresh- 
old is that virtually all the samples in the first test signal are clas- 
sified as useless. Evidently, another validation method is needed 
to handle this problem. 

- 3  z 2  
l h  1 

C. Applying the Second Validation Method 

This is why the second validation method is relevant. The in- 
troduction of this second methods is solely an attempt to handle 
the transient in a proper manner while at the same time respond- 
ing to random noise exactly as the previous method. 

The first step is to determine 01. Using the P p  = PFN curve 
for the second method, see Fig. 5, yields a value a little smaller 
than for the first validation methods, namely 01 = 0.6. The p 
is determined according to the guidelines given in Section 111-B 
with a maximum value ofy  set to approximately 100. This gives 
p = 0.017. To ensure a not too large value p = 0.012 is used. 
The result is shown in Fig. 7. It is clear that the results in the first 
test signal is approximately the same as in the first validation 
method, but the second test signal is now in general classified 
correctly. More of the transients can be ‘caught’ by increasing p ,  
but as described previously this lowers the maximal acceptable 
value of yo. In this case experiments have shown that increasing 
6 to 0.016 will produce a very good result. However, if this 
value is chosen, new yo signals must not exceed 100, or they 
will be classified as useless. 

A third option has been introduced in the second valida- 
tion method. I f  the signal yo is too small (here that is below 
y1,,/2) i t  is not attempted classified, because the second valida- 
tion method can become unstable for small yo. 

. . . .. .. .. - . . . .- . 
.. . . ..... ...... .. . . .  
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V. DISCUSSIONS 

We have presented a method for low-cost active sensor which 
provides increased robustness in comparison to the traditional 
method of using harmonic signals and followed by threshold- 
ing for validation. The use of spread spectrum signals provides 
some of the robustness, and the estimation of measurement va- 
lidity by means of channels without transmission provides some 
of the robustness. Moreover, the method is easy to implement 
and is well-suited for low-cost signal processing hardware, even 
fixed point microprocessor. 

These nice properties does not come without a cost, however. 
Using only very little information to determine the validity the 
method is bound to fail occasionally, and since the adjustment of 
parameters have not been automated it requires manual adjust- 
ment in each applications, and possibly also on a regular basis. 

Somples 

. .  
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3 80 
E 60 
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20 
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100 200 300 400 500 600 700 BOO 9W 1OW 
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Fig. 1. The second validation method applied to the two test signal sets. For 
each plot: In the middle is a graph ofthe yo channel with the S value ploned as a 
taashed line. The lowermost is a graph of the corresponding validation numbers 
E) (in dB). The three lines on top show for each sample 1) when yo < ylo,/2, 
2 )  when the validation number is less than U = 0.6 (which evaluates to -2.2 an 
the dB scale), and 3) the remaining cases which =re the useful measurement.. 
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