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Abstract: Fault detection and fault isolation for systems including parametric faults is
considered in this paper. By using a linear fractional transformation (LFT) description of
parametric fault systems, the systems are transformed into equivalent systems including
additive fault signals instead. The theory for systems including additive faults is extended to
handle the parametric fault case in the same setting. A number of fundamental problems for
parametric fault detection in linear systems is formulated and the corresponding solvability
conditions are given.
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1. INTRODUCTION

The main part of papers in the area of fault detection
and isolation (FDI) deals with fault diagnosis for sys-
tems including additive faults, see e.g. (Basseville and
Nikiforov, 1993; Chen and Patton, 1998; Frank, 1990;
Gertler, 1998; Niemann et al., 1999; Willsky, 1976)
and the references herein. The fault diagnosis prob-
lem for systems including parametric faults has not
achieved the same attention as systems with addi-
tive faults. Fault diagnosis for systems with para-
metric faults has been considered in e.g. (Basseville
and Nikiforov, 1993; Frank, 1996; Gertler, 1998; Is-
ermann, 1984; Isermann, 1997; Isermann, 1993; Pat-
ton, 1994; Stoustrup and Niemann, 1999) to mention
a few references.

In a number of fault diagnosis cases, it is natural to
assume that the faults are reflected in the physical
system parameters, as e.g. mass, friction, viscosity
etc. This fact that the parametric faults are associated
with system parameters, make it obvious that various
system identification methods can be applied for fault
diagnosis, see e.g. (Frank, 1996). Thus, detection of
faults (parameter changes) can be done by an on-
line estimation of the system parameters followed by

a validation of the discrepancy between the nominal
parameters and the estimated parameters.

In connection with fault diagnosis, Willsky, (Willsky,
1976), has pointed out that it consist of three tasks,
fault detection as the lower task, fault isolation as the
middle task and then fault estimation/identification as
the highest task. In the lower task, which is the simpler
task, it is detected whether any fault has occurred
in the system. In the isolation task, the faults which
have occurred in the system are identified. In the last
task, the quantitative extent of the occurring faults is
determined.

Based on this, it might not be an optimal method
to detect and/or isolate parametric faults based on a
parameter estimation. Detection and/or isolation of
parameter faults might instead be based on detection
and/or isolation effects in the system from parametric
changes/faults. This requires that it is possible to mea-
sure these effects from the measurement signals y. If
this is possible, fault detection/isolation can then be
done in a similar way as detection/isolation of additive
faults.

One issue to be considered in this paper is to show
how it is possible to describe systems with parametric
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faults in a form such that the fault detection and iso-
lation can be based on the effects in the measurement
outputs from the system.

The approach applied in this paper can be considered
as an algebraic approach to handle fault detection
and fault isolation of system including parameteric
faults. However, as an alternative to this approach, it
is also possible to apply a geometric approach. It has
been shown in (Edelmayer et al., 1997a; Edelmayer
et al., 1997b) that it is possible to transform a system
with parametric faults (perturbations) into an equiv-
alent system including only additive faults based on
(C, A)-invariant subspaces, i.e. the two system repre-
sentations have equivalent (C, A)-invariant subspaces.
Further, note that geometrical methods has been ap-
plied in connection with fault diagnosis in a number
of papers, see e.g. (Chen and Speyer, 2000; Edel-
mayer et al., 1997a; Edelmayer et al., 1997b; Mas-
soumnia, 1986; Niemann et al., 1999; Zad and Mas-
soumnia, 1999). An introduction to geometric control
theory can be found in (Trentelman et al., 2001).

Another issue that will be considered in this paper is
the fundamental diagnosis problem for systems with
parametric faults. The fundamental diagnosis prob-
lem, (Massoumnia et al., 1989), is the problem of
detection, isolation and/or estimation faults with zero
threshold or almost zero threshold. This requires that
it is possible to decouple the disturbances exactly or
almost from the residual signals. The fundamental de-
tection and isolation problem for systems with addi-
tive faults has been investigated in details in (Saberi et
al., 2000). The estimation problem has been investi-
gated in (Niemann et al., 1999; Niemann et al., 2000).

The rest of this paper is organized as follows. In
Section 2, systems including parametric faults are de-
scribed. Further, it is shown how it is possible to trans-
form systems with parametric faults into systems with
additive faults. Section 3 includes definitions of para-
metric fault detection and parametric fault isolation
together with a number of fundamental parametric
fault detection problems. The solvability conditions to
these problems are given in Section 4. The paper is
closed with a conclusion in Section 5.

2. SYSTEM SETUP

Consider the following system

y(s) = Gyd(θ, s)d(s) + Gyu(θ, s)u(s)

=
(

Gyd(θ, s) Gyu(θ, s)
)

(

d(s)
u(s)

) (1)

where u ∈ Rm is the control input vector, d ∈ Rq

is the disturbance input vector and y ∈ Rp is the
measurement vector. The parameter vector θ ∈ Rk

is the parametric faults in the system. Without loss
of generality, θ = 0 can be assumed to represent the
nominal value of the fault parameter vector θ.

Below, in connection with a more detailed description
of the system in (1), θ will be a k × k diagonal matrix
with the k fault parameters in the diagonal.

The system given in (1) is quite general and cannot
be applied directly in connection with parametric fault
detection and isolation. A more detailed system de-
scription is needed in order to give explicit design
equations. The interconnection between the nominal
system and the parameter fault vector is described by
using an LFT description, see (Zhou et al., 1996) for
a description of LFT. Let the system given in (1) be
extended with an additional input vector w and an
additional output vector z. The extended system is
given by:

(

z(s)
y(s)

)

=

(

Gzw(s) Gzd(s) Gzu(s)
Gyw(s) Gyd(s) Gyu(s)

)





w(s)
d(s)
u(s)





(2)

where the connection between w and z is given by

w = θz

with θ given by a k × k diagonal matrix. The above
LFT description of the system in (2) including a pa-
rameter fault vector θ is very general. The two transfer
matrices in (1) are then given by

Gyd(θ, s) = Gyd(s)

+Gywθ(I −Gzwθ)−1Gzd

= Gyd(s) + GywθΞd(θ)

Gyu(θ, s) = Gyu(s)

+Gywθ(I −Gzwθ)−1Gzu

= Gyu(s) + GywθΞu(θ)

where Ξd(θ) and Ξu(θ) are given by

Ξd(θ) = (I −Gzwθ)−1Gzd

Ξu(θ) = (I −Gzwθ)−1Gzu

Using the above description of the two transfer matri-
ces in (1), the system can now be written as

y(s) = (Gyd(s) + GywθΞd)d(s)

+(Gyu(s) + GywθΞu)u(s)
(3)

Let the residual signal/vector r be given by

r = H(y −Gyuu) = Ψ(θ, d, u) (4)

where r is a time function that takes values in Rq . In
general, we might have to take H to be a nonlinear
bounded-input, bounded-output stable operator, which
makes Ψ also a nonlinear operator. In the case that
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H is a linear operator, there exist transfer matrices
Grd(θ, s) and Gru(θ, s) such that

r = Grd(θ, s)d + Gru(θ, s)u

or using the system matrices Gyd(θ, s) and Gyu(θ, s)
given above, in the equation for the residual vector r

gives the following equation for r

r = H(Gyd(s) + Gyw(s)θΞd(θ, s))d

+HGyw(s)θΞu(θ, s)u
(5)

Note that it is not possible to remove the effect from
the control signal completely in the residual vector due
to the change of the system caused by the parameter
fault vector θ.

It is possible to rewrite (5) into

r = HGyd(s)d

+HGyw(s)θ(Ξd(θ)d + Ξu(θ)u)

= HGyd(s)d + HGyw(s)θξ

(6)

where the vector ξ is given by

ξ = Ξd(θ, s)d + Ξu(θ)u

Note that ξ depends on parameter fault vector θ, the
disturbance input vector d as well as the control input
vector u.

Now, let f be the fault vector defined by

f = θξ (7)

where the individual fault signals fi are given by

fi = θiξi

Using the fault vector f introduced in (6) gives the
following system:

y = Gyd(s)d

+ (Gyw,1(s) · · · Gyw,k(s))







f1

...
fk







= Gyd(s)d + Gyw(s)f

(8)

and the following residual vector r

r = Grd(s)d + Grf (s)f

It is assumed that the matrix Gyw does not include
columns with zeros only. This is without loss of gener-
ality. If Gyw includes a zero column, say Gyw,i, then
it will be impossible to detect the fault parameter θi

from the measurement output y. In this case, the fault
θi will be an internal fault that does not have any effect
on the system output.

The parametric fault system has then been trans-
formed into a additive fault system.

The fault vector f will depend on both the disturbance
d, the control input u as well as the parameter fault
vector θ, i.e. f = f(θ, d, u). An important fact with
the fault vector f defined in (7) is that there is a direct
connection between θi and fi. From the definition of
f in (7) we have directly

• fi = 0 if θi = 0
• fi 6= 0 if θi 6= 0 and ξ (ξi) is non-zero

It is important to note that when both the input signal
as well as the disturbance signal is zero, the vector
ξ will also be zero. As a result of this, the fault vec-
tor f in (7) will be zero as well. It will therefore
be impossible to detect and/isolate parametric faults
in this case. This is not particular to the method - a
fault in a component which is not active can never
be detected. In spite of the fact that the parametric
fault system has been transformed into a additive fault
system in (8), the parametric fault detection prob-
lem is not completely equivalent with the additive
fault detection problem. The problem that a non-zero
control and/or disturbance input is required for fault
detection/isolation in the parametric fault case is not
required in the additive fault case. This condition is
equivalent with the requirement of persistent excita-
tion in system identification. The derived model in (7)
cannot be applied in connection with fault estimation,
due to the fact that the fault vector f does not represent
the real fault vector.

A transformation of parametric/multiplicative faults
into a similar additive fault setup has also been con-
sidered in (Gertler, 1998) and in a state space setting
in (Stoustrup and Niemann, 1999). The model descrip-
tion applied in (Gertler, 1998) is included in the above
parametric fault model.

Based on the reformulation of the parametric fault
detection as an additive fault detection problem in (8),
the residual vector in (4) can be rewritten as

r = Ψ(θ, d, u)

= Ψ(f(θ, d, u), d)
(9)

One issue in connection with fault detection and isola-
tion is whether one can achieve this when the system
is affected by disturbances. A direct consequence of
this is that the residual vector needs to be insensitive
to the disturbances. That is, we need to have that

Ψ(f(θ, d, u), d) = Ψ(f(θ, d, u), 0)

for all disturbances d and parametric faults θ. How-
ever, this is an ideal case, that cannot always be
achieved. This will be considered in the next section.
If it is not possible to achieve an exact or an almost
disturbance decoupling in the residual generator, then
one has to look for design of the residual generator,
such that the effect from the disturbances on the resid-
ual vector is reduced as much as possible.
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3. DEFINITIONS AND PROBLEM
FORMULATION

First, let us give the definition for parametric fault de-
tection (PFD) and parametric fault isolation (PFI). The
standard definitions for fault detection and isolation
for additive fault systems, considered in e.g. (Niemann
et al., 1999; Saberi et al., 2000), cannot be applied
directly as pointed out in Section 2. The condition that
the system needs to be excited to detect/isolate para-
metric faults needs to be included in the definitions.
To define what we mean by excitation of a system, we
have the following definition.

Definition 1. Let a system G(s) including parametric
faults θ be given. Let disturbances d and control inputs
u be the external inputs to the system. The system is
said to be parametric fault excited if a parametric
fault θi will give a nonzero fault signal fi,

θi 6= 0 ⇒ fi 6= 0

With this definition of parametric fault excitation, we
have the following definitions for PFD and PFI

Definition 2. Let the residual generator H ∈ RH∞
be given and let the system be parametric fault excited
by the control input u. The residual r is said to achieve
parametric fault detection (PFD) without disturbances
if a non-zero parametric fault vector θ and d = 0
results in a non-zero residual r.

Definition 3. Given the residual generator H ∈ RH∞
and let the system be parametric fault excited by the
control input u. The residual r is said to achieve para-
metric fault detection and isolation (PFDI) without
disturbances if for any two different parametric fault
vectors θi and θj and d = 0 the corresponding residu-
als ri and rj are different.

In connection with the problem formulation below, it
is assumed that all k parametric faults θi can appear
simultaneously if nothing else is indicated.

As pointed out in the introduction, the fundamental
fault diagnosis problems where it is possible to de-
couple the effect from the disturbances on the residual
vector exactly or almost are very important. Now, a
number of different fault detection and isolation prob-
lems are given for systems including parametric faults.

First, let us consider the case of detection a single
parametric fault.

Problem 1. Suppose there exists a single fault, say the
θi-th fault. Further, assume that the system is para-
metric fault excited. Then, for the system given in (8),
the problem of (exact) parametric fault detection of
a single fault is finding, if existent, a bounded-input
bounded-output stable residual generator Hi whose

output is a scalar residual signal ri = Ψi(θi, d) such
that

(1) Ψi(0, d) = 0 for all disturbances d,
(2) Ψi(θi, d) 6= 0 for all fi 6= 0 and all disturbances

d.

We say that the i-th parametric fault θi is exactly
detectable if the above problem is solvable.

When the residual generator is linear, then we impose
the condition that Hi ∈ RH∞ such that Grd = 0 and
Grfi

is non-zero.

If it is not possible to achieve exact parametric fault
detection, one can consider the problem of obtaining
almost parametric fault detection. However, it has
been shown in (Saberi et al., 2000) in connection
with fault detection and isolation of additive faults,
that if almost fault detection/isolation can be obtained,
exact fault detection/isolation can also be obtained.
Therefore, formulations of almost parametric fault
detection/isolation have been omitted in this paper.

Let us consider the case with no condition on the
number of parametric faults that can appear simulta-
neously. Then, we have the following problem.

Problem 2. Consider the system given in (8) and as-
sume that the system is parametric fault excited. The
problem of (exact) parametric fault detection of a set
of multiple parametric faults θ is defined as the prob-
lem of finding, if existent, a bounded-input bounded-
output stable residual generator H whose output is a
scalar residual signal r = Ψ(θ, d) such that

(1) Ψ(0, d) = 0 for all disturbances d.
(2) Ψ(θ, d) 6= 0 for all faults θ 6= 0 and all distur-

bances d.

We say that the set of multiple parametric faults is
exactly detectable if the above problem is solvable for
it.

It turns out that the above problem for parametric fault
detection of a set of multiple parametric faults is quite
restrictive. The problem formulation as it is given in
Problem 2 also take care of the case where there is
a relationship between the faults such that the effect
from the faults vanished. This is a quite rare situa-
tion in practice. To modify the above fault detection
problem, the notation of generic fault detection has
been considered first in (Massoumnia et al., 1989) and
then extended in (Saberi et al., 2000). Due to space
limitations, the generic parametric fault detection as
well as the generic parametric fault isolation will not
be considered in this paper. See instead (Massoumnia
et al., 1989; Saberi et al., 2000) for further details
about generic fault detection and isolation.

Let us continue with the parametric fault isolation
problem. Following the line from above, we have the
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following precise formulation of the problem for exact
parametric fault isolation.

Problem 3. Consider the system given in (8). Assume
that the system is parametric fault excited. Then, the
problem of (exact) individual parameter fault isola-
tion for a set of faults θ is defined as a problem of
finding, if existent, a bounded-input bounded-output
stable residual generator H which generates a resid-
ual vector r = Ψ(θ, d) such that for any fault θi,
i = 1, 2, . . . , k, there exists a dedicated component
ri of r and the operator Ψi from d and θ to ri has the
following properties:

• Ψi(θ, d) = 0 for any disturbance d and any fault
θ such that θi is identical to zero.

• Ψi(θ, d) 6= 0 for any disturbance d and any fault
θ such that θi is not identical to zero.

The set of parametric faults θ is said to be individually
isolable if the problem of individual fault isolation is
solvable.

In the case where it is not possible to individually
isolate all parametric faults θ in the system, then one
can ask for the largest subset of parametric faults that
are isolable. We then have the following problem.

Problem 4. Consider the system given in (8) under the
assumption that the system is parametric fault excited.
Assume that the given set of parametric faults θ is not
individually isolable. Then, the problem is to obtain
the largest subset of parametric faults θs such that it is
(exactly) individually isolable.

4. SOLVABILITY CONDITIONS

The solvability conditions for the parametric fault
detection and isolation problems given in Section 3
are given without proofs. Proofs for the results can be
derived by using the results in (Saberi et al., 2000).

The solvability conditions given below are all stated in
terms of the normal rank of certain transfer matrices.
Thus, normrankG denotes the normal rank of the
transfer matrix G, i.e. the rank of G(s) for all s ∈ C
but finitely many points.

First let us give the solvability conditions for the
parametric fault detection problems.

Theorem 4.1. Consider the system given (8) with a
single parametric fault θi. Further, let the system be
parametric fault excited. Then, the problem of (exact)
parametric fault detection of a single fault is solv-
able if and only if

normrank
(

Gyd Gyw,i

)

> normrank(Gyd).

Moreover, whenever the normal rank condition given
above is satisfied, one can construct a linear residual

generator that solves the exact parametric fault detec-
tion of a single fault.

Theorem 4.2 presents the results of our study. In
presenting these results and elsewhere, we denote by
#Ωα the number of elements in the set Ωα and by fΩα

the subset of all faults in Ωα.

Theorem 4.2. Consider the system given in (8) under
the assumption that all parametric faults can occur
simultaneously and that the system is parametric fault
excited.

Then, the problem of (exact) parametric fault detec-
tion is solvable if and only if

normrank
(

Gyd Gyw,Ωα

)

≥ normrank(Gyd)
+#Ωα

for α = 1, . . . , `, where #Ωα denotes the number of
elements in the set Ωα and θΩα

the subset of all faults
in Ωα. ` is the number of subsets of faults.

The solvability conditions for the two parametric fault
isolation problems are now given.

Theorem 4.3. Consider the system given (8) under the
assumption that all parametric faults can occur simul-
taneously and that the system is parametric fault ex-
cited. Then, the problem of (exact) individual para-
metric fault isolation for a set of parametric faults
θ is solvable if and only if the following condition is
satisfied:

normrank
(

Gyd Gyw,Ωα

)

≥ normrank(Gyd)
+#Ωα,

for all α ∈ {1, . . . , `}.

As a direct consequence of the above theorem, we
have the following corollary regarding the total num-
ber of parametric faults that can be isolated exactly.

Corollary 4.4. Consider the system (8) under the as-
sumption that all parametric faults can occur simulta-
neously and that the system is parametric fault excited.
The total number of parametric faults that can be iso-
lated while solving the exact parametric fault isolation
problem is equal to

normrank
(

Gyd Gyw

)

− normrank(Gyd).

5. CONCLUSION

Four different fault detection and isolation prob-
lems for continuous-time systems including paramet-
ric faults has been considered in this paper. It has been
shown how it is possible to transform systems with
parametric faults into systems with additive faults.
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The theory for systems with additive faults can then
be applied with a minor modification. Detecting and
isolating parametric faults requires that the system is
sufficiently excited. This condition is equivalent with
the requirement of persistent excitation of dynamical
system in connection with system identification.

Only the continuous-time case has been considered in
this paper. However, the discrete-time case is equiva-
lent with the continuous-time case, and it can therefore
be handled in the same way as the continuous-time
case.

The parametric fault model that has been used in this
paper is based on the so-called LFT setup. In the
case where the parametric faults appear as nonlinear
interconnections in the system, it is also possible to
apply the derived results in this paper. In this case, a
linearization of the system needs to be done before the
diagnosis method is applied.
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