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SUMMARY

This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault
diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature
on robust control. Once the standard problem formulations are given, the fault diagnosis problems can be
solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault
estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a
class of nonlinear systems. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

The early history of the literature on fault detection and isolation (FDI) had a number of
parallels to the literature on classical control theory. In control theory, a wide range of fairly
different control problems had been formulated by many authors, and a vast number of
methods had been proposed to solve one or several of these problems. A similar situation was
dominant in the early FDI literature, and to some extent this is still the case.

In control theory, it was a major breakthrough from this perspective, when a unified approach
to a large number of control problems was suggested in terms of the so-called standard problem

formulation in robust control (see e.g. Reference [1]). In very few words, the main idea was to
launch a two stage solution: first to formulate an abstract optimization problem, that was
general enough to comprise many significant control problems; second to pursue a general
solution to this optimization problem, independent of specific control problems. The most well-
known success story along this line of thinking was probably Reference [2].

Since a somewhat similar situation was predominant in the FDI literature, it was rather
obvious to try a similar attempt in this area. In fact, it turned out that the very approach from
robust control immediately carried over, and that the standard problem formulation of robust
control had a lot to offer with respect to FDI problems.
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Actually, FDI problems were already formulated in a standard set-up, before the celebrated
two Riccati equation based H1 design method [2] was available, see Reference [3]. When the
H1 design method had become available, a standard problem formulation for design of fault
detectors were pursued, e.g. in Reference [4]. A standard problem set-up for fault detection/
estimation was presented in Reference [5]. Also, the monograph [6] includes elaborate studies on
robust estimation. The standard set-up has also been applied in [7], where examples has been
considered.

Apart from the H1 approach, a method that used the standard set-up and applied the ‘1
design method for the design of controller/residual generator appeared in Reference [8]. A
method that combined a classical FDI approach withH1 design was suggested in Reference [9],
where a factorization of the system was made and then subsequently H1 design was applied to
design a residual generator.

In Reference [10] a formulation of the design problem was made for control and FDI in the
standard set-up followed by an H2 design and a m synthesis of the design problem. This paper
included some examples. A real application example has also been considered in Reference [11].
A separation result was shown for the combined design of controller and FDI in Reference [12].
The result showed that a controller does not obscure information for a FDI filter}provided that
a good model is known. Below, we shall qualify and generalize these results.

Recently, a monograph on FDI, [13], appeared. This book includes a section dealing with
using fault estimation in the standard set-up}design by the H1 method. The combined set-up
for FDI and control is also considered in this section. An approach, using the standard set-up in
connection with design of FDI and control in the same line as in the book can be found in [14].
Another monograph [15], comprises apart from an elaborate survey on the existing theory,
several practical issues on FDI. A standard problem approach to sensitivity optimization was
considered in References [16,17]. FDI for time-varying systems was considered in Reference [18].

In this paper, we shall present a number of methods, using the standard problem formulation
to address FDI problems. The objective is three-fold: to present a few new results; to give an
overview of the state-of-the-art in this area; and finally to provide some hints on how to use this
approach in practice, as there exists a number of pit-falls in this area as well as some handy
tricks.

To the latter end, let it immediately be stated, that we assume throughout in the paper (where
not explicitly stated), that appropriate dynamical weightings have been incorporated in the
plant models to account for: disturbance models; fault signatures; design specifications;
reference models; frequency variation of uncertainty models; etc. Let us emphasize at this point,
that e.g. an H1 design which do not include some complementary weightings to handle
fundamental trade-offs and interpolation constraints tend to give absurd results. The issue of
weight selection goes beyond the scope of this paper, so we would like to refer the reader to the
rich literature on robust control. This does absolutely not mean, however, that the issue is
unimportant.

Three categories of standard problem approaches will be presented below:

* FDI for systems with model uncertainty considered in Section 3
* FDI for systems with parametric uncertainty considered in Section 4
* FDI for a class of nonlinear systems considered in Section 5.

In the three papers [19–21], a combined set-up for both feedback and fault detection filter
design problem has been considered. The design set-up is shown in Figure 1, where a standard

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:649–673

J. STOUSTRUP AND H. H. NIEMANN650



formulation is applied [1]. A complete analysis of the combined feedback controller/fault
detection filter has been given in Reference [21] for both nominal systems as well as for uncertain
systems. The results of this analysis is that there is a separation between the design of the
feedback controller and the fault detection filter in the nominal case which does not exist in the
uncertain case. The reason for this missing separation in the uncertain case is that there is a
trade-off between performance in the feedback loop and performance for the fault detection
filter.

By using the set-up shown in Figure 1, we are looking at both the feedback controller and the
fault detection filter at the same time. The other approach in fault detection is to consider only
the system without taking care of how the control signal is calculated. This set-up has been
considered in several papers, see e.g. [22–24], and the references therein. The main issue in
Section 3 is to give an analysis of the FDI design problem both in the case when the relation
between u and y is known and when it is not known. Nominal systems as well as uncertain
systems will be considered.

In the classical approach to FDI, faults are most frequently modelled as additive exogenous
signals.

This perspective is highly relevant to FDI problems, but leaves unanswered the following
problem: how are faults detected that are not associated with sensors and actuators, but rather
with internal parameter variations? How are the situation detected early, when oil is leaking in a
hydraulic system, or when the rotor in an induction motor is overheated? Such fault detection
problems cannot directly be described by using the standard FDI description by an additive
description, [19,24,25]. Instead, a parametric description of the system variation needs to be
applied in connection. This problem is the subject of Section 4. The approach taken fits very well
with the uncertainty descriptions given in the papers mentioned above and in this paper.
However, dynamic model uncertainty descriptions are not explicitly integrated in the models
described below for reasons of clarity.

Another class of processes where sensitive FDI designs might lead to frequent false alarms,
are those processes that are subject to substantial unknown nonlinear dynamics. However, in the
current technology, even for a process with a known nonlinearity, most FDI design methods lead
to a situation with large probabilities of false alarms, simply due to the fact that they rely on
linear methods and, hence, erroneously tend to detect the nonlinear effects as faults. Nonlinear
FDI detectors has until recently only been considered in rather few papers only in spite of the
tremendous problems caused by nonlinear phenomena. Nonlinearities in connection with FDI

Figure 1. Control system with actuator fault, fa; and sensor fault, fs:
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has shortly been discussed in Reference [22] and in [26]. Lately, however, there has been
increased interest in this issue, see e.g. References [27–33].

In Section 5 we will focus on direct estimation of the faults in the nonlinear case, and we shall
try to demonstrate that this problem at least in principle has a simple remedy. This remedy
provides a systematic design for nonlinear filters for nonlinear systems, but using only linear

optimization techniques. The standing assumption will be that the process in consideration is
described by a nonlinear model selected from a rich class of nonlinear dynamical systems
subjected to general fault types, represented as exogenous signals.

2. SYSTEM SET-UP AND PROBLEM FORMULATION

A general system set-up is given in the following. The general set-up will be applied in the
following sections in connection with fault diagnosis for systems with model uncertainty, fault
diagnosis for systems with parameteric uncertainty and fault diagnosis for nonlinear systems.
Consider the set-up given in Figure 2, which is an extension of the set-up shown in Figure 1, but
without a feedback controller included. The system G in Figure 2 has the following state space
realization:

’xx
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or let the system G be given as transfer functions

z
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 !
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Gzw Gzv Gzf Gzu

Gyw Gyv Gyf Gyu

 ! w

v

f

u

0
BBBBB@

1
CCCCCA ð2Þ

x 2 Rn is the state vector, z 2 Rq and y 2 Rm are the external output signal and the measurement
output signal, respectively. The inputs are external input w 2 Rr from the uncertain block D;
disturbance input v 2 Rs; fault input signal f 2 Rk and the control input signal u 2 Rp;
respectively. Further, it is assumed that all other relevant weight matrices are included in G: The
connection between the external output z and the external input w is given by

w ¼ Dz

The general system set-up given above in (1) describe a large class of different fault estimations
problems. The different cases depend on the D block in Figure 2. The system set-up for the three
different cases in this paper is now described.
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2.1. Systems with model uncertainty

Model uncertainty is directly included in the system set-up given above. In connection with fault
estimation (diagnosis) for systems including model uncertainty, it will be assumed that the
perturbation block D is scaled such that

jjDjj41; 8o

and the scaling function is included in G: There is no assumption about the structure of D:

2.2. Systems with parametric uncertainty/faults

Now, let us consider the case where the system include parametric faults (parametric
uncertainties).

Let the general system in (1) be given by

’xx

y

 !
¼

AD Bv Bu

Cy Dyv Dyu

 ! x

v

u

0
BB@

1
CCA ð3Þ

Note that the additive fault f is not included in this set-up for simplicity. However, including
the additive fault in the set-up is definitely possible and not highly complicated.

AD is a matrix that may deviate from a nominal value A0; by a (possibly nonlinear)
dependency of a fault.

Figure 2. General set-up for robust fault detection in open loop.
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Hence, in this setting we do not allow directly for faults manifesting themselves in the input
and/or output matrices (Bu=Cy) matrices which might be relevant in practice, e.g. in connection
with gain variations. However, it is quite easy to model such faults as well in the set-up given by
(3). The trick is to introduce an input filter, for instance of the form 1=ðtsþ 1Þ with t sufficiently
small, and associate the fault with the fictitious state introduced in this way.

The next step in the modelling procedure is to approximate the possibly nonlinear parameter
dependencies of AD with polynomial (in full generality: multinomial) or rational ones. Here, the
following considerations must be taken:

* rational approximations of a specified order are usually better than polynomial
approximations of the same order

* polynomial approximations of a specified order give better numerical results than rational
approximations of the same order in the algorithm given in this section.

In conclusion, at least for small or medium variations, polynomial approximations will give
better results than rational ones, but either can be considered for any application. To obtain a
polynomial approximation, the obvious approach is to compute a multivariate Taylor series.
For rational approximation the number of methods are legio. (For example, the function
sinðdÞ;�15d51 is approximated very well by the rational function f2ðdÞ ¼ d=ð1þ 0:185d2Þ but
equally well by the polynomial function f1ðdÞ ¼ d� 1

6
d3 þ 1

120
d5). We are now faced with a model

of the form (3) where AD takes the form:

AD ¼ A0 þ
X
i

fiðd1; . . . ; dpÞAi ð4Þ

where each fi are polynomial or rational functions of the parameters d1; . . . ; dp; satisfying

fið0; . . . ; 0Þ ¼ 0

(the non-faulty operation mode). Typically, each Ai will have only entries with values 0 and 1.
The third step in the problem set-up is to rewrite the model (4) as a linear fractional

transformation. A general procedure to achieve this is described in [1, Section 10.2]. As a result
we get a system of the form:

’xx

zp

y

0
BB@

1
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0
BB@

1
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x

fp

v

u

0
BBBBB@

1
CCCCCA ð5Þ

where

fp ¼ Dparzp

and

Dpar ¼

d1I1 0 0

0 . .
.

0

0 0 dpIp

0
BBBB@

1
CCCCA
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where the Ii’s are identity matrices. The dimension of each identity matrix depends on the
order of the corresponding parameter di in the polynomial or rational approximation. The
matrix A will in general differ from A0; but will be of the same dimension. Without loss of
generality, the model (4) can be assumed to be normalized such that each parameter di varies
between �1 and 1.

This general representation of a system with parametric faults is depicted in Figure 3.

2.3. Nonlinear systems

Fault diagnosis for systems including nonlinear dynamics are now described. Before the system
set-up is given, it should be pointed out that we shall not, for simplicity, include disturbances or
model uncertainty, and fault models are only included implicitly. However, we would like to
emphasize that these inclusions are straightforward extensions which can be handled by the very
same optimization methods, all based again on the standard problem paradigm of robust
control. The application of these techniques has been documented independently in a recent
series of papers, see e.g. Reference [21] and the references therein. We shall consider a general
class of nonlinear systems as depicted in Figure 4. The block diagram in Figure 4 is a special case
of the block diagram in Figure 2, without the disturbance input signal v; the control input signal
u; and where D is a nonlinear block.

Figure 3. Formulation of a system with parametric faults as a linear fractional transformation in the fault
parameters Dpar:

Figure 4. A class of nonlinear systems subjected to faults.
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In Figure 4, GðsÞ is a linear system with two sets of (vector) inputs: w1 and f ; and DNL

represents a nonlinear}possibly dynamical}mapping. The exogenous signal f is the vector of
faults to be detected and isolated by the FDI system. It is of significant importance, although
not explicitly expressed in this section, to formulate a dynamical model for the anticipated
faults. In Figure 4 this dynamical model has been incorporated in GðsÞ:

The interconnection of GðsÞ and the DNL block represents a full nonlinear model of the
dynamical process, for which we wish to design a FDI system. Usually, GðsÞ should be thought
of as the linearization of the process in some operating point.

2.4. Fault estimation problem

Based on the three set-ups given above, fault estimations problems are now formulated. The
design problem is formulated as a standard optimization problem. Let the estimation error e
defined by

e ¼ f � #ff ð6Þ

where #ff is given by

#ff ¼ F ðsÞy

or by

#ff ¼ F ðsÞy � F ðsÞGyuu

when the control input signal is included in the set-up. The design problem is to design the
residual generator such that the estimation error e is minimized in some sense.

It should be pointed out that the standard set-up applied in this paper can also be applied in
connection with fault detection as well as fault isolation. The estimation error given by (6) is
then given by

e ¼ V ðsÞf � r

where V ðsÞ is a weight matrix and the residual vector given by r ¼ F ðsÞy or by r ¼ F ðsÞy�
F ðsÞGyuu when the control input signal is included in the set-up. In the fault detection case as
well as in the fault isolation case, V need to satisfy a rank condition but else free to select. In an
optimization of a residual generator using the standard set-up, V need to be optimized
simultaneously with the residual generator, which complicate the optimization. A method for
doing this optimation has been described in References [34,35].

3. FDI FOR SYSTEMS WITH MODEL UNCERTAINTY

An analysis of fault estimation (fault diagnosis) for systems including uncertainty will be in this
section. The main analysis results will be given here for both nominal systems as well as for
uncertain systems in open and closed loop set-up. Based on the general case, a special case is
shortly considered.
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3.1. General case

Consider the system given by (2). Let the loop from z to w is closed by the uncertain block D;
w ¼ Dz; the open loop system in (2) takes the following form:

y ¼ ðGywDSDGyv þ GyvGywDSDGyf þ GyfGywDSDGyu þ GyuÞ

v

f

u

0
BB@

1
CCA

¼ ð %GGyv
%GGyf

%GGyuÞ

v

f

u

0
BB@

1
CCA ð7Þ

where SD ¼ ðI � GzwDÞ
�1: Based on the equation for the output given by (7), we have the

following result.

Theorem 1
Let the fault estimation error be given by (6). The fault estimation error for the uncertain system
in (7) in open loop is then given by

eopenðDÞ ¼ ðI � FGywDSDGyf � FGyf Þf � ðFGywDSDGyv þ FGyvÞv

� FGywDSDGyuu

The fault estimation error for the nominal system ðD ¼ 0Þ in open loop is then given by

eopen ¼ ðI � FGyf Þf � FGyvv

With the perturbation block present in the system, three additional terms appear in the
equation for the estimation error, compared to the nominal case. Further, it turns out from the
nominal case that it is not possible to make estimation of f if the disturbance v is in the same
frequency range as the fault signal f is and has the same direction at the system. There is a
trade-off between fault detection and disturbance attenuation. This trade-off exist also in the
uncertain case together with the uncertainty D which make the fault estimation more difficult.
Now, consider the closed loop uncertain system. The control input signal u is given by

u ¼ KðsÞy ð8Þ

where KðsÞ is a stabilizing feedback controller. Closing the loop in (7) with a feedback controller
KðsÞ; we get the following result.

Theorem 2
Let the fault estimation error be given by (6). The fault estimation error for the uncertain system
in (7) in closed loop is then given by

eclosedðDÞ ¼ ðI � F ðI � %GGyuKÞ
�1 %GGyf Þf � F ðI � %GGyuKÞ

�1 %GGyvv

The fault estimation error for the nominal system ðD ¼ 0Þ in closed loop is then given by

eclosed ¼ ðI � FSGyf Þf � FSGyvv

where S is an output sensitivity function.
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From the above, we can see that the only difference between the estimation error for the open
loop given in Theorem 1 and for the closed loop given in Theorem 2, in the nominal case is that
the sensitivity function S is included. So, if the filter is selected as Fclosed ¼ FopenS�1; we get
exactly the same equation for the estimation error as in the open loop case. Hence, we can
conclude that the open loop and the closed loop cases are equivalent in the nominal case as it
was shown in more detail in [12]. Due to the uncertain block D; the open loop and the closed
loop estimation error is not so directly related as in the nominal case.

3.2. A special case

A special case of the more general case considered in Section 3.1 will be considered here. Let us
consider a system given by

y ¼ GðsÞðI þ DÞðf þ vþ uÞ ð9Þ

where D is a multiplicative perturbation at the plant input. Using the same formulation as in
Section 3.1, the system in (9) is given by

z

y

 !
¼

0 I I I

G G G G

 ! w

v

f

u

0
BBBBB@

1
CCCCCA ð10Þ

Note that both the fault signal f ; the disturbance signal v and the control input signal u enter
the system at the same place. If there is not a separation in frequency between the fault signal
and the disturbance input signal, it will not be possible to separate the fault signal from the
disturbance signal. Without loss of generality, it will in the following be assumed that there is no
disturbance input signal, i.e. v ¼ 0: Using Theorems 1 and 2, we get directly the following
lemma.

Lemma 3
The fault estimation error e for the uncertain system in (9) is given by

eopenðDÞ ¼ ðI � FGðI þ DÞÞf � FDu

for the open loop case and

eclosedðDÞ ¼ ðI � FSGðI � DT Þ�1ðI þ DÞÞf

for the closed-loop case, respectively, where T ¼ GKðI � GKÞ�1 is the complementary sensitivity
function. The nominal fault estimation errors are given by

eopen ¼ ðI � FGÞf

and

eclosed ¼ ðI � FSGÞf

for open loop and closed loop, respectively.

Note that the fault estimation error for both open loop as well as for closed loop in the
uncertain case, can be written as the fault estimation error for the nominal case and an
additional term as function for the uncertain block. For the closed loop case, the fault
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estimation error can be written as

eclosedðDÞ ¼ enom þ eclosed;uncðDÞ

¼ ðI � FSGÞf � FSGDf � FSGDTI ðI � DTI Þ
�1ðI þ DÞf ð11Þ

Now, consider the case where the feedback controller is designed with 50% robustness
margin, i.e. jDTI j ’ 0:5: Then jDTI ðI � DTI Þ

�1j ’ 1: The estimation error from (11) is then given
by

eclosedðDÞ ’ ðI � 2FSGÞf � 2FSGDf ð12Þ

As a consequence of (12), we can see that even if the uncertainty is small, a quite large
estimation error is obtained due to the term FSGf : If the nominal estimation error enom is small,
i.e. jenomj51; we will have that FSG’1 in the frequency range where we want to make fault
estimation. Using this approximation, (12) is then given by

eclosedðDÞ ’ �ðI þ 2DÞf ð13Þ

in a certain frequency range. Eq. (13) shows that we get more than 100% estimation error in the
case where the feedback controller is designed with 50% robustness margin. This result is in
accordance with the results from Reference [19], where it is shown that it is not possible to
separate control and fault detection in the uncertain case when a compact set-up is applied. The
results here give an indication of how the estimation error will increase when a separated design
of the controller and the fault detection filter is applied.

At first glance it seems a little strange that we get a worse estimation error when we applied
the information of how the control input signal is derived. The reason is that we in practice
decrease the information available for the fault estimation. In the open-loop case we use the
control input signal directly, where as the control input signal is only used indirectly in the
closed-loop case. As a matter of fact, when we use the open-loop formulation, the uncertainty
will not be fed back, because we use the real signal. Hence, we have more information available
in the open-loop case which makes the difference. The analysis of the closed-loop case above
shows what can happen when this information cannot be used.

4. FDI FOR SYSTEMS WITH PARAMETRIC FAULTS

4.1. Problem formulation

The approach taken is to model a potentially faulty component as a nominal component in
parallel with a (fictitious) error component. The optimization procedure suggested in this
section then tries to estimate the in- and outgoing signals from the error component. This works
of course only well in cases where the component is reasonably well excited, but on the other
hand, if the component is not active at all, there is absolutely no way to detect whether it is
faulty, in theory or practice!
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In Section 2.2 a model was derived from the ‘physical’ parameter varying model having the
form:

’xx

zp

y

0
BB@

1
CCA ¼

A Bf Bv Bu

Cf 0 0 0

Cy 0 Dyv Dyu

0
BB@

1
CCA

x

fp

v

u

0
BBBBB@

1
CCCCCA ð14Þ

where

fp ¼ Dparzp

was a vector of output signals from the error components, and

Dpar ¼

d1I1 0 0

0 . .
.

0

0 0 dpIp

0
BBB@

1
CCCA

was a matrix, containing in its diagonal the values of the parameter deviations.
The next step in setting up the fault estimation problem as a standard optimization problem is

to introduce two fault estimation errors ef and ez as

ef ¼ fp � #ffp and ez ¼ zp � #zzp ð15Þ

where #ffp and #zzp are the estimates of fp and zp; respectively, to be generated. The rationale for
estimating both is, that on top of designing a supervisory system that reacts on a threshold value
of either variable, forming the ratio of the norms of these two signals provides an estimate of the
parameter values themselves.

Combining (14), (15), and the identity u � u; the standard model becomes:

’xx

zp

ef

ez

u

y

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

A Bf Bv Bu 0 0

Cf 0 0 0 0 0

0 I 0 0 �I 0

Cf 0 0 0 0 �I

0 0 0 I 0 0

Cy 0 Dyv Dyu 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

x

fp

v

u

#ffp

#zzp

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð16Þ

The signals and interconnection structure defined in this way is depicted in Figure 5.
In order to design a filter F such that applying F to u and y:

#ffp

#zzp

 !
¼ F

u

y

 !

provides the two desired estimates #ffp and #zzp; one additional step is required, which is the
introduction of a fictitious performance block Dperf ; suggesting that the inputs ðvuÞ were generated
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as a feedback Dperf from the outputs ðefez Þ:

v

u

 !
¼ Dperf

ef

ez

 !

Finally, we introduce

D ¼
Dpar 0

0 Dperf

 !

Introducing Dperf in Figure 5 and extracting the D block from the diagram, gives Figure 6 which
shows the final standard problem formulation.

The significance of the Dperf block is the following. According to the small gain theorem, the
H1 norm of the transfer function from ðvuÞ to ðefez Þ is bounded by g if and only if the system in
Figure 5 is stable for all Dperf ; jjDperf jj15g: Hence, the problem of making the norm of the fault
estimation error bounded by some quantity has been transformed to a stability problem. We
shall give more details on this issue in the following section.

Usually, filtered versions of ew and ez will be used in a practical optimization. This is easily
done by introducing some auxiliary states in the model. Provided theH1 norm from ðvuÞ to ðewez Þ is
sufficiently small, the ratio jj #wwf jj=jj#zzf jj is a good approximation for Dpar:

4.2. Main results for FDI problems with parametric faults

The main result is:

Theorem 4
Let F ðsÞ be a linear filter applied to the system (16) as ð

#ffp
#zzp
Þ ¼ F ðuyÞ; and assume that F ðsÞ satisfies:

jjF‘ðG*zz *ww; F Þjjm5g

Figure 5. Standard problem set-up for parametric fault detection.
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then the resulting fault estimation error is bounded by

ef

ez

 !�����
�����

�����
�����5gN

where N is the excitation level of the system, i.e. jjðvuÞjj ¼ N :

In the following we shall present a synthesis procedure for F ðsÞ: A number of different more or
less complicated synthesis methods can be applied on the above design problem given in
Theorem 4. The main problem with the above design problem is that the perturbation block D
consists of both real and complex perturbations. The standard m synthesis method [1], cannot in
general be applied without introducing conservatism in the design. The reason is that the
standard m synthesis method can only handle complex perturbations. A number of alternative
synthesis methods for mixed perturbations has been considered in Reference [36] in connection
with design of a missile autopilot.

Indeed, it is possible to apply the standard m synthesis, if an additional scaling matrix is
introduced in the method. This extra scaling matrix takes into account the difference between
the mixed and the complex m: In the following, the complex m and the modified m synthesis
methods are shortly described.

Figure 6. Standard problem formulation. The middle block is the same as the one indicated by the dashed
box in Figure 5.
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4.3. m Synthesis

We may now formulate an optimal robust performance problem in terms of m:

F ðsÞ ¼ arg min
F ðsÞ2F

jjmDðFlð *GGðsÞ; F ðsÞÞÞjj1 ð17Þ

where F denotes the set of all nominally stabilizing controllers (there might not exist an
admissible controller achieving the minimum, but we make this abuse of notation for
convenience). *GG is the system, see Figure 6. Unfortunately (17) is not tractable since m cannot be
directly computed. Rather the upper bound bmin is used to formulate the control problem:

F ðsÞ ¼ arg min
F 2F

sup
o

inf
DðoÞ2D;GðoÞ2G

inf
bðoÞ2Rþ

fbðoÞj %ssðSðoÞÞ41g ð18Þ

where

SðoÞ ¼
DðoÞF‘ð *GGðjoÞ; F ðjoÞÞD�1ðoÞ

bðoÞ
� jGðoÞ

� �
ðI þ G2ðoÞÞ�1=2

where

D ¼ fdiagðD1; . . . ;Dp; dIperf ÞjDi 2 Cki�ki ;Dn

i ¼ Di > 0; d 2 R; d > 0g

G ¼ fdiagðG1; . . . ;Gp;OÞjGi 2 Cki�ki ;Gi ¼ Gn

i g

The structure of D and G depend on the structure of the perturbation block D:
For purely complex perturbations, the control problem reduce to

F ðsÞ ¼ arg min
F 2F

sup
o

inf
D2D

f %ssðDðoÞF‘ð *GGðjoÞ; F ðjoÞÞD�1ðoÞÞg ð19Þ

The control problems (18) and (19) are both scaled H1 optimization problems. Scaled H1

optimizations have recently been an area of intensive research within the automatic control
community. However, no solution to (18) or (19) has yet been found. Rather iterative
approximate solution procedures have been developed for both purely complex and mixed
perturbation sets.

4.4. Complex m synthesis

An approximation to complex m synthesis can be made by the following iterative scheme. For a
fixed controller F ðsÞ; the problem of finding DðoÞ at a set of chosen frequency points o is just the
complex m upper bound problem which is a convex problem with known solution. Having found
these scalings we may fit a real rational stable minimum phase transfer function matrix DðsÞ to
DðoÞ by fitting each element of DðoÞ with a real rational stable minimum phase SISO transfer
function. We may impose the extra constraint that the approximations DðsÞ should be minimum
phase (so that D�1ðsÞ is stable too) since any phase in DðsÞ is absorbed into the complex
perturbations. For a given magnitude of DðoÞ; the phase corresponding to a minimum phase
transfer function system may be computed using complex cepstrum techniques. Accurate
transfer function estimates may then be generated using standard frequency domain least
squares techniques.

For given scalings DðsÞ; the problem of finding a controller (in our case a filter) F ðsÞ which
minimizes the norm jjF‘ðDðsÞ *GGðsÞD�1ðsÞ; F ðsÞÞjjH1

will be reduced to a standard H1 problem.
Repeating this procedure several times will yield the complex m upper bound optimal controller
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provided the algorithm converges. Even though the computation of the D scalings and the
optimalH1 controller are both convex problems, the iteration procedure is not jointly convex in
DðsÞ and F ðsÞ and counter examples of convergence has been given [37]. However, the iteration
seems to work quite well in practice and has been successfully applied to a large number of
applications. Furthermore, with the release of the MatLab m-Analysis and Synthesis Toolbox,
commercially available software now exists to support complex m synthesis using this iteration.

4.5. Mixed m synthesis

A detailed description of the mixed m synthesis method described in the following can be found
in References [38,39].

The main idea of the proposed mixed m iteration scheme is to perform a scaled complex m
synthesis where the difference between mixed and complex m is taken into account through an
additional scaling matrix GðsÞ: Given the augmented system *GGðsÞ; a stabilizing controller F1ðsÞ
(e.g. an H1 optimal controller) we may compute upper bounds for m across frequency given
both the ‘true’ mixed perturbation set D and the fully complex approximation Dc; i.e. di are
considered as a complex parameter. In order to ‘trick’ the H1 optimization in the next iteration
to concentrate more on mixed m; we will construct an open-loop system *GGDG1

ðsÞ which, when
closed with the previous controller, has frequency response equal to the mixed m upper bound
just computed. In the mixed m iteration, however, the structure of the approximation is different.
*GGDG ¼ GD *GGD�1 is constructed by applying two scalings to the original system *GGðsÞ: A D scaling
such that %ssðF‘ðD *GGD; F ÞÞ approximates the complex m upper bound and a G scaling to shift from
complex to mixed m: In each iteration, G can be computed as

GiðsÞ ¼
giðsÞInze 0

0 Iny

" #

where

giðjoÞ ¼ ð1� aiÞjgi�1ðjoÞj þ ai
#mmDðF‘ð *GGðjoÞ; FiðjoÞÞÞ

#mmDc ðF‘ð *GGðjoÞ; FiðjoÞÞÞ

ai is a certain filtering variable, see below, nze denotes the number of measurement outputs and
nze denotes the number of external outputs. For perfect realizations of the scalings we will have

%ssðF‘ð *GGDG1
ðjoÞ; F1ðjoÞÞÞ ¼ #mmDðF‘ð *GGðjoÞ; F1ðjoÞÞÞ

where #mmD denoted the upper bound for m: The controller F2ðsÞ then will minimize the H1-norm
of an augmented system which closed with the previous controller F1ðsÞ has maximum singular
value approximating mixed m: New mixed and complex m bounds may then be computed and
the procedure may be repeated.

Applications of the mixed m method can be found in References [38–40]. It is shown that the
above mixed m synthesis method are more optimal than the direct mixed m synthesis method
described in Reference [41].

4.6. A combined FDI set-up

As mentioned above, parametric faults in actuator and sensor dynamics can easily be modelled
in the approach of this section by a simple trick. However, the additive fault description is the

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:649–673

J. STOUSTRUP AND H. H. NIEMANN664



most used approach, see e.g. References [19,26,42]. A system set-up for parametric and additive
faults will shortly be considered in the following.

Including additive faults in the model described in Section 2.2 gives the following system:

’xx

y

 !
¼

AD Bfa Bv Bu

Cy Dyfa Dyv Dyu

 ! x

fa

v

u

0
BBBBB@

1
CCCCCA ð20Þ

where fa is the additive fault input vector.
For obtaining a standard optimization problem, the estimation error ea is introduced as, in

the the parametric fault case:

ea ¼ fa � #ffa ð21Þ

where #ffa is the estimate of fa; that need to be generated by #ffa ¼ F ðsÞy:
Combining the model for the parametric fault case given by (16) with the estimation error for

the additive faults given by (21) gives a set-up where the design synthesis given in Section 4.2 can
be applied directly to the above system.

5. FDI FOR A CLASS OF NONLINEAR SYSTEMS

5.1. Problem formulation

In the internal model control (IMC) approach to nonlinear systems, the underlying idea is to
copy any nonlinear dynamics in the observer. We shall generalize this concept in terms of the
fault detection architecture shown in Figure 7, although the suggested approach will not be
observer based. A similar architecture was used for gain scheduling purposes in Reference [43]
and for control of time varying systems in Reference [44].

In Figure 7, the interconnection of F ðsÞ and the lower DNL block represents the FDI system to
be designed. F ðsÞ is a free linear parameter to be synthesized, whereas DNL is simply a copy of
the (known) nonlinear dynamics of the process.

The signal #ff is the estimate of f generated by the FDI system. By using the general set-up
shown in Figure 7, it is possible to handle both actuator faults, sensor faults and internal fault
signals, see e.g. Reference [38].

The signal w2 represents the response to the test signal z2 generated by the linear part of the
FDI system, F ðsÞ: Hence, in analogy, in nonlinear IMC control, w2 would be an estimate of w1

based on the estimate z2 of the internal signal z1:
The nonlinearity DNL in this setting will be assumed to be sector bounded in an H1 sense. To

be more precise, we shall employ a stability argument below. The crucial assumption is then that
by absorbing dynamical weights, GðsÞ can be designed such that it is possible to infer stability of
the nonlinear loop with some specific DNL from robust stability w.r.t. the H1 unit ball. It is
quite easy to describe a nonlinearity for which this is not possible globally, but in practice the
assumption will usually hold, at least in some reasonable neighbourhood of the linearization
GðsÞ:
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In the following we shall describe a synthesis procedure for the linear part F ðsÞ of the FDI
system.

5.2. A standard problem approach for nonlinear FDI problems

In this section we shall first rewrite the isolation problem as a decoupling problem, and then,
subsequently, transform this decoupling problem into an equivalent stability problem.

First, as in standard observer approaches, we consider the fault estimates rather than the
estimates themselves:

eðtÞ ¼ f ðtÞ � #ff ðtÞ

Hence, the problem now has been transformed to make eðtÞ small for any (bounded) f ðtÞ or,
equivalently, to bound the (nonlinear) operator gain from f to e; which we shall take to mean
the L2–L2 gain. Without loss of generality (by absorbing scalings in the GðsÞ part) we can
assume that the required L2–L2 gain is unity. The next step is to transform the L2–L2 gain
requirement to a stability requirement. Sufficiency for this is readily obtained through a small
gain argument, by employing the above assumption.

Indeed, in Figure 8 the L2–L2 gain from f to e is inferred to be bounded by one if robust
stability holds for the system augmented with the DP block inserted, for all DP 2 H1; jjDPjj151:

The final step now is to reformulate the set-up depicted in Figure 8 into a standard problem
formulation (see e.g. Reference [1] for a description of the standard problem). The result is
shown in Figure 9.

In Figure 9, stability subject to any linear operator valued entries of DNL; jjDNLjj151; and of
DP; jjDPjj151 implies the normalized nonlinear operator gain from fault vector f to fault
estimation error

e ¼ f � #ff

Figure 7. Fault detection for a nonlinear system.
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to be bounded by unity. This follows from a small gain argument along with the assumption of
the nonlinearity.

The relationship between *GGðsÞ in Figure 9 and GðsÞ in Figure 8 is given by

z1

z2

e

y

w2

0
BBBBBBBB@

1
CCCCCCCCA

¼ *GGðsÞ

w1

w2

f

#ff

z2

0
BBBBBBBB@

1
CCCCCCCCA

¼

ðI 0ÞGðsÞ
I 0 0

0 0 I

 !
0 0

0 0 0 0 I

0 0 I �I 0

ð0 IÞGðsÞ
I 0 0

0 0 I

 !
0 0

0 I 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

w1

w2

f

#ff

z2

0
BBBBBBBB@

1
CCCCCCCCA

or

*zz

*yy

 !
¼ *GGðsÞ

*ww

*uu

 !

Figure 8. Introduction of a performance block.
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which means that

*GGðsÞ ¼

0 0 0 0 0

0 0 0 0 I

0 0 I �I 0

0 0 0 0 0

0 I 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

þ

I 0

0 0

0 0

0 I

0 0

0
BBBBBBBB@

1
CCCCCCCCA
GðsÞ

I 0 0 0 0

0 0 I 0 0

 !
ð22Þ

or

*GGðsÞ ¼
*GG *zz *wwðsÞ *GG *zz *uuðsÞ

*GG *yy *wwðsÞ *GG *yy *uuðsÞ

 !

¼

Gz1w1
ðsÞ 0 Gz1f ðsÞ 0 0

0 0 0 0 I

0 0 I �I 0

Gyw1
ðsÞ 0 Gyf ðsÞ 0 0

0 I 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

where

GðsÞ ¼
Gz1w1

ðsÞ Gz1f ðsÞ

Gyw1
ðsÞ Gyf ðsÞ

 !

Figure 9. Standard problem formulation.
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In particular we note, that if the state space representation of GðsÞ:

’xx

z1

y

0
BB@

1
CCA ¼

A B1 B2

C1 D11 D12

C2 D21 D22

0
BB@

1
CCA

x

w1

f

0
BB@

1
CCA

is of order n; so is the state space representation of *GGðsÞ:

’xx

z1

z2

e

y

w2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

A B1 0 B2 0 0

C1 D11 0 D12 0 0

0 0 0 0 0 I

0 0 0 I �I 0

C2 D21 0 D22 0 0

0 0 I 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

x

w1

w2

f

#ff

z2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

which implies that the crucial optimization in the sequel will involve a system of the same order
as the original system data.

5.3. Optimization

The desired filter F ðsÞ can be found directly by m-optimization w.r.t. the following structure of
the singular value:

DNL 0 0

0 DNL 0

0 0 DP

0
BB@

1
CCA ð23Þ

i.e. with one repeated full complex block and with one non-repeated full complex block.
Our main result states that a nonlinear fault detection system can be computed by first finding

a linear filter by solving a m problem for a linear system structure.
The resulting filter solves the FDI problem according to the following result:

Theorem 5
Assume that the system

*GGðsÞ ¼
*GG *zz *wwðsÞ *GG *zz *uuðsÞ

*GG *yy *wwðsÞ *GG *yy *uuðsÞ

 !

and the linear filter F ðsÞ satisfies
jj *GG *zz *wwð�Þ þ *GG *zz *uuð�ÞF ð�Þ *GG *yy *wwð�Þjjm5g ð24Þ

w.r.t. the uncertainty structure (23), then the L2–L2 operator gain from fault f to fault
estimation error

e ¼ f � #ff
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when applying the FDI system:

is bounded by g as well.

A fault detection system based on Theorem 5 can be computed by the D-K algorithm.
Although (24) is a model matching problem, the solution to this is obtained by applying
standard D-K iterations to the system *GGðsÞ; since *GG *yy *uu: Hence,

*GG *zz *wwð�Þ þ *GG *zz *uuð�ÞF ð�ÞðI � *GG *yy *uuð�ÞÞ
�1 *GG *yy *wwð�Þ ¼ *GG *zz *wwð�Þ þ *GG *zz *uuð�ÞF ð�Þ *GG *yy *wwð�Þ

Alternatively, using multiplier theory, a solution based on linear matrix inequalities can be
given, which is omitted here due to space limitations.

6. CONCLUSIONS

In this paper, three different classes of FDI problems have been addressed: FDI for uncertain
systems; FDI for systems with parametric faults; and FDI for nonlinear systems.

In Section 3, fault detection in open loop vs. closed loop has been considered for both
nominal systems as well as for uncertain systems. In the nominal case, there is in principle no
difference between open loop and closed loop fault detection. This is not the case for uncertain
systems. In this case, there is a trade-off between good fault detection and good performance of
the closed loop system. The trade-off can be quantified by comparing optimization results of the
combined system with optimization results of the two individual parts.

A systematic modelling and synthesis procedure for deriving fault detection and isolation
filters for parametric faults has been presented in Section 4. Further, a combined set-up for fault
detection and isolation in systems including both parametric as well as additive faults has been
given.

The derived method includes a possibility for trading off the risk of undetected faults to the
risk of false alarms.

The FDI set-up considered in Section 4 deals only with the nominal case. However, the
synthesis procedure for deriving fault detectors can quite easily be extended to handle model
uncertainties, i.e. robust fault detection and isolation. This can be done by including uncertainty
blocks in the block that describes the parametric fault and the performance condition. Both real
as well as complex uncertainties can be handled in the set-up. This section proposes a numerical
solution based on a specific mixed m optimization method. This is just one of many feasible
solution, however, and depending on the application and problem data, one might choose any
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alternative optimization method, such as other algorithms for m optimization, or altogether
different approaches, such as multiplier methods based on LMI algorithms.

In Section 5 an optimization filter synthesis procedure has been proposed for design of a fault
detection and isolation system for a class of nonlinear systems. The designed FDI system is
nonlinear itself, where the nonlinearity}in similarity to the internal model control approach to
nonlinear systems}is copied from the (known) nonlinearity in the process itself, although the
suggested FDI system architecture is not explicitly observer based.

In spite of the fact that the resulting FDI design is nonlinear, the involved optimization only
requires linear theory, and hence, the computational problems are no harder than those
involved with linear optimization based filter or control theory. To compute the linear
part of the FDI system, either m optimization or optimization based on linear matrix in-
equalities (LMIs) using multiplier techniques can be chosen. Furthermore, in the LMI
formulation, convex optimization can be applied, which means that filters can be designed fast
and efficiently.

The presented algorithm does not explicitly include exogenous disturbances or (linear or
nonlinear) model uncertainty. However, handling these issues in the presented framework is
straightforward, and has been described elsewhere.

Faults are represented as exogenous (vector) signals, where each component of the vector is
isolated by the estimator, and the approach allows treatment of actuator faults, sensor faults, as
well as internal faults.

As a final conclusion, the inherent flexibility of the standard problem approach allows
any of the above methods to be combined with each other or with altogether different
methods. Admittedly, a sufficiently complex set-up will lead to optimization problems that
cannot be solved online even with slightly more powerful computers. Since many FDI
systems are commissioned based on off-line computations, however, this is usually not
prohibitive.
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