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Abslrocf-Fault diagnosis system usually comprises ttio paN: a 
filtering part and a decision part, the laner typically based on 
threshold functions. In this paper, a systematic way to choose the 
threshold values is proposed. A test function for the Bltered signals 
is proposed and a method is described for determining the optimal 
threshold value for this test function in order to detect pmence or 
absence of a certain fault in the filtered signal. Optimal is in this 
context taken to mean minimizing the larger of the probabilities 
for making a false positive dwbion and for making a false negative 
decision, which is equivalent to balancing these two probabilities. 

I .  INTRODUCTION 

Most of the emphasis in the literature on fault diagnostic 
systems is made on designing filters for fault detection or fault 
estimation, [I] ,  121, [31. 141, [SI, 161, [71, [SI, [91. The output of 
such filters are signals that take values in a continuous range. 
Usually, the approaches which have been suggested assumes that 
the final diagnostic can be designed by applying thresholds to 
the output of the designed filters. Often it is left to the system 
designer to choose appropriate values for these thresholds. In 
this paper, a method for choosing such thresholds based on 
system knowledge will he proposed. In contrast, [Z] contains 
a thorough treatment of an overall design based on statistical 
hypothesis test theory for detecting abrubt changes. In the 
present paper, both abrupt and incipient faults will he treated. 
A typical structure of a fault diagnostic system is shown in 
Fig. I .  

~~~1 
diagnosis 

Fig. 1. A typical struclure for fadl  diagnostic systems, where G is the 
planL K a controller, F a fault estimation filter, and the 'Decision' box 
generates the actual diagnosis. f is a vector of fault signals. d is a veclor 
of disturbance signals, f is an estimate of the faults. and 'diagnosis' is 
a set of logical signals. indicating which (if any) fault h a  occurred. 

Fig. I illustrates a system G with a controller K for which the 
known inputs U (control signals) and outputs y (measurements) 
are fed to a fault estimation filter F .  The system is subjected 
to two unknown sets of inputs: faults f and disturbanceslnoise 
d .  The output of F is an estimate f of the actual faults f 
which should be designed in such a way, that the effects of 
the disturbances d are as small as possible. 
This paper will only focus on the design on the decision block, 
so some simplifying assumptions will be made. First of all, 

it will he assumed that the system is invertible, such that the 
transfer function from f to f can be made constant or at least 
diagonal. If this is not satisfied in practice, there will be cross- 
couplings that will compromise optimality in the results below. 
It is possible to extend the approach suggested to the non- 
invertible case. However, in many cases, the methods proposed 
will give reasonable results even for non-invertible systems 
even without modification. The second assumption is that the 
fault estimation errors e = f - f are entrywise independent 
and normally distributed. This might also not apply in many 
practical cases, but as with the other assumption. it is possible 
to generalize the concept. and the methods would work in many 
cases without modification. 
The purpose of the decision logic is to decide for each fault 
whether it has occurred at some time instance, 121, [31, [SI, 171, 
[IO]. The common design objective is to make this decision with 
a predetermined error rate. Making an error means making the 
wrong decision. The error rate might be set once and for all, [3]. 
[SI, it might be run-time adjustable (adaptive tuning), [3], [ I l l ,  
or it might be given by user input. In any case, it is important to ' 

distinguish between the two basic types of errors, false positive 
(FP). i.e. deciding that a fault has occurred in a healthy situation, 
and false negative (FN), i.e. deciding that a certain situation is 
healthy, although a fault has actually occurred. In other words, 
a FP decision is a false alarm, and a FN decision is an actual 
fault, which was ignored. 
It is easy to see that the two objectives of making the probability 
of making a FP decision small resp. of making the FN prob- 
ability small are always contrary. Which probability should be 
emphasized is truly application specific. In the sequel, we shall 
suggest to minimize the larger of the two. This is obviously 
equivalent to making the two probabilities equal. However, it is 
straightforward to introduce another weighting between the two 
probabilities in the methods proposed below. 
The results derived in this paper is based on methods derived 
in [IZ], where a general principle for design of active sensors 
has been given. 

A. Thresholds on the Fault Estimates 

The easiest way of detecting a fault is to fix a threshold above 
which a fault estimate is considered to specify a signal level 
above which a fault is assumed and below which the signal 
is assumed to be the cause of disturbanceslnoise. [3], [13]. 
[SI, 1141. In most fault diagnostic systems, this approach is 
used to provide input to the supervisory level of the system. 
Typically, the threshold is set to a level which empirically yields 
a oredetermined urobabilitv of FP under eiven conditions. If the 
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distribution and variance of the noise is known, it is easy to 
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determine the threshold. This method employs a fixed threshold 
and is therefore easy to implement. 
Although applying an FP-based threshold directly to the fault 
estimates is straightforward and simple to do, this approach does 
not yield the true error rate since it does not include the FN 
probability. The challenge when including the FN probability 
is that it depends on the noise level as well as the desired 
maximum sensitivity to small fault signal amplitudes whereas 
the FP probability depends on the noise level only. This is 
illustrated in the following example. 
Assume that the noise in a given control system is normally 
distributed with zero mean and standard deviation 10, and that 
the error rate is specified to This corresponds to 4.15 
times the standard deviation, and the threshold should be set to 
48 accordingly (assuming that only integers are allowed). This 
ensures that the probability of detecting an fault when there is 
none is However, if a fault is present and results in a 
true fault estimate of 48  half of the estimates will be below 
the threshold, and thus the FN probability is 0.5. When the 
fault signal develops to larger amplitudes and the true estimate 
increases to 96 the FN probability drops to In both cases 
the FP probability is If the diagnostic system is specified 
to have an error rate of (at most) this is only valid for the 
faults which causes a true estimate of (at least) 96. 
Note that while the fixed threshold on the measurements works 
fine in a white noise scenario (when the above consideration 
are taken into account) the method lacks the ability to properly 
distinguish between large estimates caused by a large amplitude 
fault and by powerful noise. 

B. Adaptive Threshold Levels 

In the sequel, only the decision parl of the diagnostic system 
will be considered. Thus, for notational reasons, the fault 
estimates will he referred to simply as y rather than ? ( I ) .  
Thus, time dependencies will be suppressed, although it will 
be assumed that the estimates are averaged over a small time 
window. The procedure will be described for a specific fault. 
The individual faults are assumed to be independent. Thus, 
the procedure should be repeated for each fault. Methods for 
designing estimation based fault detectors are described in e.g. 
[IS], 1161, 1171, [181. [19]. Methods for exact and optimal design 
of observers for signal estimation can be found in [ZO]. 
The deficiency of the fixed FP-based threshold detection demon- 
strates the need for an adaptive decision method, [3], [21], 
[ I l l ,  [221. In the following subsections an adaptive method is 
reported. It is based on the principle of regular signal-to-noise 
ratios (SNR), 

loioglo k = O ,  I , .  . . ,M - 1 
E n = M Y n  

where M is the number of possible faults and N +  I the number 
of samples in  the time window considered. This means that 
instead of detecting the faults by a threshold on the estimates, 
the detection is based on some sort of SNR, called a detection 
function. The function in the two detection methods reported 
here is 

(1) 

where N +  1 is the length of they signal. This implicitly assumes 
that yo is the fault under consideration and the other entries yI  
through y~ are noise. Having information about the noise, it 
is natural to compare the (potential) fault signal to the noise 
directly as in ( I ) .  

Y; @(Y) = 
Ek=OYk 

The detection scheme takes the following form: 

The purpose of using this method is to be able to properly detect 
faults in the case of severe noise. At the same time it must be 
able to provide a detection scheme with a predetermined error 
rate for normally distributed noise. This goes for FP as well as 
FN errors. 

11. DETECTION METHOD 

f i o  parameters have to be determined in order to use the 
detection method. They can obviously be determined empirically 
by trial and error. However, if one wants to quantify the error 
rates it is necessary to know the relation between instances of the 
(almost) stochastic process y. and a. As argued in the beginning 
of Section I it is reasonable to require the FP and FN error rates 
to be equal in the random-noise worst-case scenario, i.e. in the 
case where the signal is the weakest possible and yet still useful. 
In the following a statistical model for balancing the probability 
of a FP decision and a FN decision is presented. The entire 
exercise is about determining the correct a. Obviously, the 
probability P F p  of detecting a signal when none was received 
decreases with large values of a. And vice versa. when a is 
small, the probability & of ignoring a signal that was actually 
received is also small. Thus, choosing a can be seen as a 
compromise between FP and FN risks. 
The purpose of the statistical model is to determine the optimal 
threshold a. We define an optimal threshold as that value of a 
for which the probability for a worst-case FN decision based on 
T(a)  equals the probability for an FP decision based on T(a) .  
A worst-case FN decision is understood as an FN decision in the 
presence of the faintest received signal which is to be considered 
useful. It is straightforward to modify the approach below in 
order to meet this compromise with a preference to either a low 
FP or a low FN probability. 
Note that in the following model 0 has been divided by N since 
this makes the denominator resemble the variance of the signal. 

A. Sraristical Model for Dereministic Fault Signal 

The reader is reminded that if N stochastic variables {Yk}k=I...N 
are normally distributed, Yk E N ( 0 ,  I ) ,  then Y: belongs 
to the X*(N) distribution, which is a special case of the r 
distribution, x 2 ( N )  = r($,2). This means that the probability 
of an FP decision is 

M a )  = P ( z ,  > 4 

and the probability of an FN decision is 

where o2 is the true (and unknown) variance of the noise. R,,, 
is the worst-case SNR, i.e. R,,, = ylow/a, where ylow is the 
lowest detectable signal level of yo. Note that this makes R,, 
the 'real' SNR since yo  is (for the time being) assumed to 
be deterministic. R,,, would typicall be a desi parameter 
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Finally, it can be shown that the standard substitution t = tan 
leads to the following algebraic integrand 

Even though the integral in ( 5 )  is algebraic, it can not he 
resolved analytically. However, numerical experiments show that 
e.g. an adaptive recursive Newton Cotes 8 panel rule performs 
better on ( 5 )  than on (4). The resulting probability function for 
N = I3 is shown in Fig. 2 (N = 13 is chosen to match the 
experimental signals in Section 111). 
Exploiting the probability function Pm(a)  which can be evalu- 
ated numerically by ( 5 )  it is straightforward to get a calibrating 
curve for a under the constraint that 9p = &. To that end, 
we start with a value of a, and numerically determine Pp(a). 
Then the inverse of the xz(N) distribution function applied to 
h ( a )  yields the ratio between Rmr and a. This relationship 
is shown in the top plot of Fig. 3. 

E .  Statistical Model for Stochastic Fault Signals 

In the analysis above, we have modeled the false negative situ- 
ation as receiving a noise-free signal yo of a certain magnitude, 
which is incorrectly classified as noise, since the real noise 
signal y~ through y , ~  happens to be large at the same time. 
This is of course unphysical to some extent, but was done in 
order to simdifv the exmessions 

Fig. 3. The curves show the relationship between the worst-case SNR 
value R,, and the threshold value a in the test T(a). The top plot for 
a deterministic yo  and the bottom plot for a stochastic yo .  Here N = 13. 

A more realistic model is obtained by assuming that yo is 
an outcome of a stochastic variable, also in the false negative 
decision case. The analysis in principle involves the same steps 
as above. hut the algorithm to compute the calibration curve 
now becomes a bit more involved. 
With respect to the false positive decision case, nothing is 
changed and the false positive probabilities as a function of the 
threshold value a can he precomputed. In order to determine the 
calibration case, the hest approach is to choose a grid of values 
for the threshold value, a. Then the task is to determine for each 
value of a. a corresponding value of the signal-to-noise-ratio 
(SNR) which leads to the same probability for a false negative 
decision as for a false positive decision for that a. It is obvious 
that for a fixed value of a, the false negative probabilities are 
monotone (non-decreasing) functions of the SNR. Thus, the 
right values of SNR can he found for instance by a simple 
bisection approach with SNR as the independent variable. For 
fixed values of a and SNR, the false negative probabilities can 
be computed as 

where ymin denotes the smallest possible mean) SI nal received 
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(at least the smallest for which the algorithm is guaranteed to 

p. and 5 = fzr='=,y? (which is then X*(N)-distributed), we 
fulfill the specified probabilities). Introducing S N R =  9. 50 = 10- 

obtain 70-2 

< a : 5 0 ~ ~ ( ~ ~ ~ , ~ ) , 5 ~ ~ 2 ( ~ )  

The calibration curve resulting from applying the bisection 
algorithm mentioned above based on numerical evaluations 
of (6).  can be seen in the bottom plot of Fig. 3. Comparing 
the two subplots of Fig. 3, it is easy to see that they are almost 
identical for large S N R s ,  whereas the bottom plot suggests larger 
values of a for small S N R  values. In fact, the bottom curve has 
a left, horizontal asymptote for SNR - -m, which is easy to 
verify. Indeed, as SNR + -m the measurements yo for the false 
positive and the false negative decisions asymptotically belong 
to the same distribution, i.e. N ( 0 , I ) .  Thus, the requirement 
pm = & in the limit leads to 

p {ti < a5 : 50 E N ( o , ~ ) ,  5 t x* (N)  1 
= ~ { t i > a t : 5 0  E N ( O , I ) , ~ E X * ( N ) }  

However, since these two probabilities in this case are obviously 
related also by 9p = I -Pm, we obtain P, = = f ,  which 
corresponds to a unique value of a. 
While the qp is only dependent on a, and decreases with 
increasing a, the probability of making a FN error is also 
dependent on the signal lcvel (as described previously). Thus, 
the P m  curve can be plotted for fixed ylow, i.e. fixed S N R .  
In Fig. 4 seven such curves are plotted for the SNR values 
corresponding to the seven marked points on the PFP = Pm 
curve in the bottom plot of Fig. 3. As expected Pm increases 
with increasing a. The points where the PFP curve intersects 
with the seven curves correspond to the points marked in 
the bottom plot of Fig. 3. 

I l l .  RESULTS 

The test setup used is actually just an optical sensor system, so 
the experiment is designed to demonstrate sensor faults only. It 
functions by emitting infra red light and receiving reflections 
from moving objects in front of the system. The setup has 
been constructed in engineering and financial collaboration with 
LEG0 Engineering, Denmark, and it is shown in Fig. 5 .  Due 
to space limitations, a thorough description of the test rig can 
not be given, but the main point is to give examples of signals 
which can be analyzed using the approach suggested above. 

A. Detection of Faults 

This test setup is used mainly for evaluating the detection 
methods presented in Section I. For that purpose three test 
signals have been recorded. The signals are all from the same 
receiver (in Fig. 5 i t  is the one on the bottom right) . Faults 
have been introduced on the three emitters (from right to left in 
Fig. 5 )  (channel 0, I ,  and 2, respectively). There are 16 samples 

17 

Fig. 4. The one 4p curve (dashed) and the &N curves (solid) 
corresponding to the marked paints in the top pan of Fig. 3. The crossing 
points gives the a value which gives = &N for the SNR used for 
drawing each of the seven I ~ N  curves. The slight imgularity of some 
of the curves are due to numerical instability. 

Fig. 5 .  The Setup used for recording he test signals. The squares show 
the location of the receivers. and thc circles show the locations of the 
emitten. The driver electrnnics is also located on each of the six small 
circuit boards. The are individually connected 10 the computer in the 
background. 

in each block, so there are 3 potentially faulty channels and 13 
channels for evaluating the noise at any time. The three signals 
have been generated in the following way: 

Test signal 1: A fault slowly develops receivers, and then. at 3 
seconds, disappears. Then it is quickly reintroduced 
and removed twice, and finally back in. Note, that the 
fault has different effects on the various emitters. 

Test signal 2 The fault now appears at the beginning and disap- 
pears again. Then at 4 seconds it reappears. Meanwhile 
the receiver circuit has been subjected to an electrical 
disturbance (by quickly touching one of the pins on 
the photodiode with a screwdriver). 

Test signal 3: Again a fault is introduced from the start. this 
time with larger amplitude than in the Drevious two . 
signals. For 2.5 seconds the screwdriver has been 

Proceedings of the Amencan Control Conference a5 Denver, Colorado June 4-6.2003 



touching the photodiode pin. 

Clearly, the faults influence more than one output. Thus, a 
method for joint detection could be used. However, we believe 
that the benefits of joint detection is small or even negligible in 
this case. Therefore, we consider only detection for the outputs 
individually, and since the methods is the same for every output 
only one. y ~ .  is discussed in this section. 
The three test signals are shown in Fig. 6. The 13 noise channels 
are not shown due to space limitations. In all three test signals 
the noise channels are contain random-noise which is very close 
to being normally distributed. In the second test signals the noise 
channels also contains a series of separate spikes, and in the 
third test signal the samples in the range from 400 to 800 are 
all spikes. 
The detection method uses a threshold on the ratio between 

- 
8 2  

G 

T(a)  : @(y) Y: z a 
&=3yk 

... 
....... . . . . . .  1- 

30 
20 

signal and noise to classify the SNR. When a@J&t&fic&&nt~ 1 0  

signals at hand the detection method becomes Q O  
-10 

-20 
0 100 200 300 400 MO 600 700 800 9w 1000 

The method has been applied to all three test signals. 

B. Applying the Delection Merhod 

The first thing to do is to determine the worst-case SNR. i.e. 
the weakest detectable signal compared to the expected random- 
noise level. The weakest signal is chosen to be ylow = 15. In the 
present setup this depends on the minimum level at which a fault 
should be detectable. The first half of they1 channel in  the first 
test signal is generated by increasing the fault signal from a 
small level to the largest admissible and a little further, thus 
showing the weakest detectable signal to be approximately 15. 30 

Since the variance a2 is approximately 9.1, R,,, = ylOw/o = - 
4.8. Using the curve the lower-most plot in @ f r & g t W l W n t e  ‘E 
The first test signal subjected to the detection method is shown -ZOO loo 2oo 3oo loo MO 6oo ,oo 8oo 9w lDoo 
in Fig. 6.  The lowermost graph shows the detection function 
O(y) and the a is plotted as a dashed line in the same axis. - 
The detection behaves as expected. For the ‘no fault’ part in the - 
beginning, T(a)  is false for almost all samples (approximately 1 
out of 50 is expected to he accepted as a useful GM). When the 
signal level approaches ylow, which equals 15 and is shown with 
a dashed line, the detection shifts in favor increasingly more 
useful measurements. Again the fraction of signals classified 
incorrectly is 1/50 for signal level close to ylaw. Note that 
the point in time (here measured in samples) at which more U 2o 

situations are considered faulty than healthy is the same as 0 

where the average level of the signal is y1,,/2. This happens 
around sample number 250. This corresponds with the notion 30 

that if the signal itself was used for detection (as explained in - 2o 
Section I) and 4p should equal pnU for the wESk@ &jde&bbnt& ’: 
signal the threshold should be half the weakest detectable signal Q_,o 
level. This level is 48 in the example in Section I. 
When the signal level then raises above ylow the h decreases 

shows that every single measurement is considered useful. Here 
h equals approximately (for signal level 27). Note also 
that the transient-like measurements are (correctly) considered 
useful by I ( a ) .  
Now, applying the detection to the two other test signal and 
using the same parameters the result is less gratifying. The 
second test signal seems to be as expected, at least for the non- 
transient samples. Zooming in on the transients (not shown) 

20 

approximately a = 0.5 for which P F ~  = h x 0.02. -10 

Samples 

120 
-lW 

100 200 300 400 500 600 700 800 9w 1000 

Samples 
(but 4p is still the same), and the lasf 7.00 samples of the signal Fig, 6 ,  The fint derecti,,” method applied to ,,,e Ulree For 

each plat: In the middle is a graph of fie yI channel, ne is 
a graph of the corresponding B(y) (in dB). The two lines on top show 
for each sample 1) when the lest T(a)  is false and 2) me. Here a = O . 5  
(which is -3.0 in the dB scale of the above graph and marked by the 
dashed line) and P, = &N ii: 0.02. 
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reveals that a majority. but not all, of the transients have indeed 
he classified as useless. The third test signal shows this only too 
clearly. When not just a few, but 400 consecutive samples are 
transient noise, the incorrect detection becomes evident as the 
majority of these samples are classified as useful. 
It is worth noting that the detection does not fail because there 
is no significant difference between @(y) for the faulty and non- 
faulty parts of the third test signal. It fails because the threshold 
is wrong. However, the threshold has been determined such that 
it complies with our notion of proper behavior in a random noise 
scenario, and accordingly it works fine for the signal without 
transients. This problem can be solved easily by increasing the 
threshold to around 20, which seems to separate nicely the faulty 
and non-faulty parts in the third test signal. However, the result 
of simply increasing the threshold (which applies to all three test 
signals) is that virtually all the samples in the first test signal 
are classified as faulty. Evidently, another detection method is 
needed to handle this specific problem. In [I21 a design method 
based on the test function: 

(7) 

has been proposed, and a design procedure has been developed 
in analogy to the method proposed in this paper. In  cases like 
the latter, the detection method based on (7) handles transients 
and spikes much better than the one presented in this paper at 
the cost of a slightly more involved design procedure. It has 
been left out of the present exposition, however, mainly due to 
space limitations. 

IV. CONCLUSIONS 

A general principle for designing a decision block for a di- 
agnostic system has been presented. This principle was based 
on assessing the signal level of disturbances and noise in the 
system at all times by comparing the various outputs. residuals, 
or fault estimates. Subsequently, the decision on presence or 
non-prcsence of a fault is made by selecting a (dynamical) 
threshold value for each potential fault residual or estimate. The 
threshold was chosen in order to balance the risk for making a 
false alarm (false positive decision) to the risk of ignoring an 
actual fault (false negative decision). As these risks are always 
i n  conflict, obviously balancing them is equivalent to solving a 
minimax problem, i.e. to minimizing the larger of the two. 
A method were suggested for designing such a threshold func- 
tion. The purpose of this is to be able to distinguish between 
high signal amplitudes caused by the fault signal and by other 
events. The methods are based on SNR-likc functions, and much 
of the effort was invested in determining the parameters in the 
methods such that the pure random noise scenario is handled 
properly and such that the false positive and false negative 
probabilities of validating measurements incorrectly are evenly 
balanced. 
The method was demonstrated through three recorded test 
signals to handle the random noise properly. It failed in parts 
of the transient and for some of the spikes. These problems, 
however, can to a large extent be fixed by introducing one 
additional design parameter into the test function, as has been 
demonstrated in a reccnt thesis. 
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