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AbsImcf-This paper deals with bumpless transfer between 
a number of advanced controllers, e.g. in a gain-scheduling ar- 
chitecture. Linear observer-based controllers are designed for a 
number of Linear approximations of the system model in a set of 
operating points, and gain scheduling control can subsequently 
be achieved by interpolating between each controller. We use 
the Youla-Jabr-Bongiorno-Kucera parameterization to achieve a 
differentiable scheduling between the controllers. This approach 
produces a controller as a linear fractional transformation 
between a controller and a scheduling parameter. In ihk paper 
we propose a systematic approach to achieve bumpless transfer 
between different nominal controllers. The approach is tested 
on a simple, but highly nonlinear model of a coal-fired power 
plant. 

I. INTRODUCTION 
In the power generation industry, the current trend to- 

ward market deregulation, coupled with increasing demands 
for maximization of natural resources and minimization of 
environmental impact, places greater and greater focus on 
effective plant-wide operation and control systems. Load 
following, i.e., the ability of the power plant to meet the 
power production demands at all times without wasting 
resources, is becoming a major concern due to the growing 
competition between power companies and other market 
forces, c.f. [3] and the references therein. 

Power plant processes are complex, of high order, highly 
nonlinear, and noisy, which implies the necessity for employ- 
ing multivariable control principles in order to obtain good 
stability and performance [I I]. Conventionally, power plants 
have been operating for extended periods of time in, or close 
to, steady state, and the transitions from one operating point 
to another, when required are typically fairly slow. However, 
with the increasing demand for load following capability 
outlined above, the ability of the power plant to perform 
stable and fast transitions between different operating points 
is becoming more and more important, a task that must be 
addressed by the power plant control system. 

Gain scheduling control is a celebrated approach to track- 
ing control of "well-behaved" nonlinear systems, which has 
been employed in several power plant control applications, 
e.g., [51, [SI, and [131, as well as in numerous other practical 
applications in diverse fields such as flight control systems 
[71, [IO], automotive control [61, and process control [2]. 
See also [I51 for a general survey of gain scheduling. 
Gain scheduling schemes involve linearization of the system 
model in an appropriate set of operating points, followed by 
synthesis of one or more linear controllers for the system 
in these points, for instance using robust or optimal design 
methods (see e.g., [16]). However, it is important to note 

that, even if two controllers KI  and Kz are designed for the 
same linear system, there is no guarantee that a simple linear 
combination of the two controllers K = aK, + (1  - a)&, 
where a E 10; I] is a scheduling variable, stabilizes the system 
for 0 < a < 1. 

1121 provided a framework for gain scheduling control 
based on the Youla-Jabr-Bongiomo-Kucera (YJBK) param- 
eterization of all stabilizing controllers. By using the YJBK 
parameterization of all stabilizing controllers for the interpo- 
lation it is possible to switch between individual stabilizing 
controllers in a stable manner. [I] elaborated upon this idea 
by proposing a scheme that, based on several linearized 
models extracted from an artificial neural network, provided 
the basis for the design of a number of controllers in 
different operating points and gain scheduling using the 
YJBK parameterization. 

In this paper we expand upon the work done in the 
aforementioned papers [12] and [l] by demonstrating how 
to switch between different nominal controllers, based on 
which the continuous gain scheduling takes place, after a 
new operating point bas been reached. This switching should 
of course take place without introducing disturbances from 
the switching itself, i.e., via bumpless transfer. This issue 
is relevant when several controllers have been designed for 
different operating points, and it is desired to keep the order 
of the resulting controller reasonably low. 

In some previous approaches, such as [4], bumpless trans- 
fer is achieved by introducing a feedback that continuously 
forces the output of the *next' compensator to stay close to 
the actual compensator output. In the present approach, a 
similar structure is introduced based on the YJBK param- 
eterization, which allows for handling stability in a more 
systematic way. 

We also go into details with how to handle integrators in 
this framework. The gain scheduling approach proposed in 
this paper is tested on a simple, but highly nonlinear model 
of a coal-fired power plant. 

The outline of the paper is as follows. Section II provides 
an overview of the YJBK parameterization and controller 
scheduling framework. In this section we also present the 
proposed approach to gain scheduling with bumpless transfer 
and discuss the actual implementation of the gain scheduling 
control method in details. Section III illustrates the usage of 
the method on a simulation model of a coal-fired power plant. 
Finally, Section IV sums up the conclusions of the work. 
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11. G A I N  SCHEDULING CONTROL 

In this section, we first provide a brief review of the 
framework established in [12], on which we base the con- 
troller synthesis. Following that, we discuss how to achieve 
humpless transfer to new nominal controllers and some 
accompanying implementation issues. We will provide all 
results in this section in discrete time, although they are 
equally valid in continuous time. 

A. Basic Controller Paramelerization 
Consider the system G with the state space realization 

where y E BP! is the measurement vector, U E R"'u is the 
control vector, v E RP? is the signal to he controlled (which 
may coincide with y) and w E is a disturbance vector 
containing noise and command signals. If the subsystem 
G,, given by the matrices (A>&,Cy,DYu) is stabilizable and 
detectahle, G can be stabilized by an observer-based feedback 
controller (see e.g. [16]). This setup is illustrated in the left 
part of Figure 1. 

V;' 

w 
Fig. I .  L e k  The inlerconnection of the system G and the observer-based 
contmller K(Q) = x*Q, where denotes the s t a r p r d u ~ t  1161. Right: The 
conlmller is implemented usins coprime factorizations of  the cunlroller and 
S)Stem. 

Let G,.,(z) = C , . ( d - A ) - l B , + D ,  be written using co- 
prime factorization as ' ' 

G , , ( z ) = N M - ~  = W , V  (2) 

with N ,  M : f i , R  E XH-. Further, let a number of controllers 
for G,, be given by 

K ~ ( ~ ) = u ; v ; '  =V;'Gi, i = O ,  ..., v - I  (3) 
where U ; , v , U i , V i  E XFf-. These coprime factorizations can 
be chosen to satisfy the double Bezout equation 

[ C- -!;I ~ i ]  = p ui] [ VL 
= [L :] - N M N V ,  N i f - N M  

for i = O?. . . , v  - 1. All stabilizing controllers for Cy!, based 
on any particular stabilizing, nominal KO can now be written 
according to the YJBK parameterization 

i.e., the linear fractional transformation setup depicted in the 
left pan of Figure 1. We then have the following result from 
N61. 

Theorem I: Let a number of stabilizing controllers (3) 
be given for a system (2). Then K;,i  = 0,. . . , v  - 1 can be 
implemented as K(Qi )  = X * Q ; ,  with Q, E KH- given by 

' 

Q; = GiVo - RUo = C(Ki --_Ko)Vo. 
Proof: Follows by inserting Qi = Vi(& - Ko)Vo in (4). 

rewriting the expression as 

K(Qj )  =Ko+V~'C(l+(Ki-Ko)NVi)- ' (Ki-Ko) 

and using the Bezout identity to show that I +  (Ki - K o ) f l ;  = 

Theorem 1 states that it is possible to implement a con- 
troller as a function of a stable parameter system Q based on 
another stabilizing controller, as depicted in the right p m  of 
Figure 1. This implies that it is possible to change between 
two controllers online, say, from a nominal controller KO to 
another controller Kj, in a smooth fashion by scaling the Q; 
parameter by a factor a E [O; 11. 

In this paper we employ the YJBK theory to change from 
one controller designed in one operating point to another con- 
troller designed in a different operating point of a nonlinear 
system. Thus we implicitly assume that the nonlinear system 
is sufficiently well-behaved for the resulting gain scheduled 
controller to stabilize it in between the operating points. This 
is not explicitly guaranteed by the YJBK-parameterization, 
which only ensures stability while changing controllers in 
one operating paint. 

We shall also exploit some specific properties of a state 
space implementation of the YJBK parameterization to trans- 
fer not only parameters but also state information from one 
compensator to another. 

B. Bumpless Transfer 
If controllers have been designed in many operating points, 

the order of the controller K ( Q )  may become prohibitively 
large. If, for instance, there are v controllers in v operating 
points, all of order n, the order of K ( Q )  would typically 
be (2v - 1)n. Thus, it is desirable to switch to a new 
nominal controller, whenever the plant state has reached a 
new operating point, and base further gain scheduling on 
this controller. In that case, the order of K ( Q )  would be 
maintained at 3n at all times, at the expense of having to 
replace and Q during operation. 

Now assume we wish to construct such a gain scheduled 
controller, which includes integral action in order to remove 
any steady state errors that might arise from unmodelled 
dynamics, etc. 

The integrator is included in the controller by augmenting 
the controller by an extra state defined as the integral of the 
control error e = y -yref, which corresponds to placing a 
pole in z = 1. However, we observe that both of the coprime 
factors U; and Vi in ( 3 )  must be stable. This means that 
including an integrator on either side of the summation point 
in the middle of Figure 1 will add a pale in z = 1, violating 
the conditions for Theorem 1 to hold. However, it is possible 

V C q .  
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to circumvent this difficulty by factorizing the integrator into 
the following coprime factorization: 

where 0 < r < 1, yielding VI, U1 E %-gm. 
It should be noted that a compensator with control ac- 

tion composed by observer based feedback and by integral 
action can be designed under the usual separation principle 
paradigm. Although not mentioned in all undergraduate text- 
books, the principle is simple: the observer gain is designed 
for the original system parameters, an (extended) feedback 
gain is obtained for an extended system model including the 
integrator, and the two actual feedback gain matrices - state 
feedback and integral feedback - is obtained by partitioning 
the extended feedback matrix consistently with the extended 
state space model. The proof of separation proceeds as usual. 

Next, we present bow to find Q once a number of 
controllers have been found in individual operating pints.  
The following calculations should be canied out for each 
pair of two adjacent operating points, between which gain 
scheduling should take place. 

e - C& 

U 
Fig. 2. 
scheduling parameter a. rhus appears in the middle block only. 

Theinterconnection o f rheconml le rK(a )  = K * % ( a ) * K j .  The 

Figure 2 illustrates the interconnection of the controller. 
Let 4, the augmented controller on which we base the YJBK 
scheduling, be given as (see e.g. [16]) 

where A + B,& and A + GC, are stable matrices (i.e., the 
norms of all eigenvalues are less than one), and rl E R P x P  
represents the integrators included for each measurement 
output channel, factorized as described above. g takes the 
signals e and U, as inputs and yields the outputs U, which is 
applied to the plant, and el. which is fed to Q. Note that, for 
a = 0, the resulting controller becomes 

which can be recognized as a standard observer-based con- 
troller. As depicted in Figure 1, K(a) is formed as a linear 
fractional transformation of K and Q scaled by a, i.e., 
K(aQ) = K* (aQ). When a = I we must have K ( Q )  = K I  
where 

Note that, in the LFI setup, K I  takes e, as jnput and yields 
UJ as output. Hence we may find-Q as Q = g ( l ) * K ~ ,  where 
g ( a )  is chosen such that K* K(1) is an identity system. 
Fairly straigbtfonvard calculations yield 

r~ 

where %(a) takes U I  and the prediction error from KO as 
inputs and yields U, and e, as outputs. 

This particular implementation of the YJBK parameteri- 
zation has the following surprising properties. 

Theorem 2: Assume that the syste-m given by (1) is con- 
trolled by the controller K(a) = K*K(a)*KI where g, R, 
and K1 are given by (6), (9), and (8), respectively. Then the 
poles of the resulting closed loop system are given as the 
eigenvalues of the matrices 

A+LoC,, A t L l C , ,  and -rl 

independently of the value of a. 
Theorem 2 holds due to a separation property which can 

be verified by tedious calculations by writing out the state 
space formulae for the closed loop system and changing 
coordinates from observer states to state estimation error 
signals. The proof for this separation property will not be 
given here, but in the actual humpless transfer algorithm, we 
shall use the separation property explicitly in terms of the 
following state properties: 

%orem 3: Let x x ,  x ~ c ( ~ ) ,  and XK] denote the state 
vectom of the three systems given by (6), (9), and (8). 
respectively. Then, at all times,_the control signal U generated 
by the controller K ( a )  = K* K(a)*KI is given by: 

U =  [ FO I ] x x - a [  FO I ] ~ e ( ~ ) + a [  6 1 ] X K ~  

Moreover, if for some time interval, a 
difference 

I ,  then the state 

x & ) = x ~ ( r ) - ~ ~ ( ~ ) ( r ) + O  as r i m  (10) 

at a rate governed by the eigenvalues of the matrices 

[ A+BuFo "F ] , A+,!&,, and -rl  
CY 

2061 



BOLEn 

1 Conversely, if x, = 0 at some time instance, then 

The property (IO) follows from the separation principle men- 
tioned above (which can he verified by elementary algebra), 
whereas the two other properties are trivial consequences of 
the state space forms. 

C. A Bumpless Transfer Procedure 
In Subsection 11-B a global linear model was intrinsically 

assumed in order to establish the theoretical results. The 
practical use of this is based on robustness properties of 
the results, i.e. that stability etc. is preserved in an open 
neighborhood of the system parameters. In this subsection, 
we will present a practical procedure which specifies how 
to update parameters from one compensator to the next for 
a system with linear models which depend on the operating 
point. 

In padcular, we shall use the controller structure from 
Subsection II-B with the modification that the system param- 
eters (A,B,,C,) are replaced by (AI~,B,o,C,,~) (the original 
system parameters) in (6) and in (9), whereas the next 
compensator will he based on the new system parameters, 
such that (A,B,,C,) are replaced by (AI ,&,.I ,Cy.,) in (8). 

Procedure I :  Assume that the transfer has to take place 
between time TO and time TI, that the system parameters 
have changed from (Ao,B,,,o,Cv.o) to (AI,B~~.I,C,.I) during 
that time interval, and that the next compensator in line is 
also an integral observer based compensator with feedback 
gains F2 and fiz and observer gain L2. Then a(.) should he 
chosen as a function of time with the following properties: 

u = ( l - a ) [  FO I ] x ~ + a [  FI I ] X K ~ .  

1) a is monotonously non-decreasing, To < f < T j  
2) a(T0) = O  and a ( z )  = 1 
3) a(f) E 1 for TI -re < f < TI, where f, is 'sufficiently 

large' compared to the eigenvalues of 

[ Bufio I ] , A + h C S , a n d - r l  

At time f i  the transfer is performed by the following 
substitutions of parameters and states: 

(Ao,B~:o,C!.O) + (A I ,&.I tCv.1 ) 
(AI 1 Bu. I 1 C v :  I ) + (A22Bu.2, C v . 2 )  
(Fo,fio,LO) + (FI,FII,LI) 
(Fi,fii,Li) + (Fz,fi?,Lz) - xx, 

x c ( a )  i XK1 

XK,  + X K ~  (unchanged) 

and a(?+) is reset to 0. (A2,B,,;2,Cy.2) are the system 
parameters for the next operating point in line. 

According to Theorem 3, under the system assumptions 
above, Procedure 1 will guarantee 

1) stability in the entire time interval To 5 f 5 TI 
2) humpless transfer at r = T j  
The intuition behind the procedure above, is that the state 

convergence property (10) is exploited to guarantee 

U = FIXK, (11) 

I 
I /  I A 1  

Fig. 4. Simplified model ofboiler. 

at f = TI-. Now, replacing x s  by XK,,  Fo by FI and resetting 
a, ensures that (11) is also satisfied at f = Tj+ .  

Finally, we note that it is advantageous to add the steady- 
state control signal corresponding to the operating point in 
which the controller is designed, to the output from the 
controller. This control signal is scaled according to the 
scheduling parameters before being fed to the plant. 

111. POWER PLANT CONTROL SIMULATION 
In this section we will demonstrate the practical usefulness 

of the proposed scheduling method on a simulation model of 
a power plant. 

Figure 3 illustrates how the considered power plant works. 
Water is pumped from a feed water tank through a preheater 
and into the boiler. In the boiler, the water evaporates in 
the evaporator and the temperature is further increased in 
the superheaters. The superheated steam is then expanded 
through the turbines, which drive a number of generators 
producing electricity. After the turbines the water is led hack 
to the feed water tank. 

Figure 4 shows the simplified model of the boiler used 
here. The gas in the boiler room and the stem, in the 
evaporator are lumped together into a single average state. 
Assuming that the mass flow of the smoke (and ashes) equals 
the mass flow of coal and air, just three state variables are 
left: the temperature and density of the steam, and p,,, 
along with the temperature of the smoke, T,. The controlled 
inputs are the mass flow of coal, mc, and the mass flow of 
the feed water, mf. 

The heat flux from the coal and air is modeled as 

Qc = m,h, + moha, 
where h, and h, are the specific enthalpies of the coal and 
air, and ma is the mass flow of air. The heat flux of the smoke 
is modeled as 

Qg = ( m c  +mo)cgTg> 
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Fig. 5. 
shows the steam temperature. The bottom figure shows the s t e m  pressure 

Simulation in entire mge with no gain xhedding. The top figure 

where cg is the specific heat capacity of the smoke. This 
gives the following time derivative of T,: 

where mg is the mass of the smoke (and ashes) and Q,,. is 
the heat flux through the evaporator wall modeled as 

where a, and E," are heat transfer coefficients of the wall. 
"be time derivative of r, is modeled as 

where h , ( T , p , )  is the enthalpy of the steam, hf  is the 
enthalpy of the feed water, C, is the heat capacity of the 
wall, V is the volume of the evaporator, and ms the mass 
flow of steam out of the evaporator modeled as (see [9]) 

where P(&, p s )  is the pressure of the stem, PO is the pressure 
in the tank, and PV is a flow coefficient. The final time 
derivative needed is that of ps which is simply given by 

dp, m f - m  
dr V '  
_ = _ _  

By assuming 

h, = 25 M J / k g ,  h, = 570 
cs = 1280 J / ( k g K ) ,  mg = 1677 
a,, = 12 k W / K ,  E, = 0.00068 
C, = 103 M J I K ,  V = 28.3 
h i  = 1400 kJ/kg ,  Po = 6.2 

(14) 

MPfl, 

and !3" = 0.00031 kgK'/Z/(sPa) to be constants we have a 
third order dynamical model given by Equations (12), (13), 
and (14). With ma calculated as a function of m, the model 
has two control inputs mc and mf. 

~ 
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The values of the constants were found by fitting the model 
to measurement data from an actual 400 MW power plant. 
The fitted model showed good agreement with the actual 
data, considering how simple it is. 

The method presented in Section I1 is applied to the 
simulation model of the power plant. The control objective is 
to maintain the steam temperature, T,, at 700 K while keeping 
the steam pressure at a desired reference value using the 
control inputs mj and mc. The operating point is determined 
by the desired steam pressure, P,ef E [225;400] bar. Three 
operating points are chosen: wt : P,f = 400 bar, w2 : Pref = 
300 bar, and wg : = 225 bar. In each of the three points 
a linearized model of the plant is obtained with a sampling 
period of 5 s and a discrete time LQRLQE controller with 
integral action is designed for this model with emphasis on 
disturbance rejection. 

If we simply use the controller designed for w2 in the entire 
operating range we will not obtain an acceptable behavior 
as shown in Figure 5.  At high pressures the temperature 
control is poor and at low pressures the closed loop is only 
marginally stable. 

Now the three controllers, KI, K z ,  and Kg, are scheduled 
according to P,f using the method presented in Section 11. 
This is done by finding the Q that schedules between each 
two controllers, i.e., finding Qjj and Kjj such that Kjj (0)  = Kj 

Figure 6 shows the simulation going through the three 
operating points. At the dotted lines the controllers are 
switched. Initially K12 is used. As P,ef ramps to wZ, a is 
ramped from 0 to 1 making K12(aQl2)  go from K I  to Kz. At 
the first dotted line a bumpless transition to Kzg is performed 
and a is set to 0. At the next dotted line we switch to K32 
and at the last line we switch to K2t. Before each transition 
a bas been 1 for a while to ensure the humpless transfer. 
As seen, the transfer is indeed completely humpless and the 
performance during the relatively fast ramping is good. 

and K;j(Qjj)  = K j .  

IV. DISCUSSION 
A procedure for bumpless transfer has been proposed, 

which, under assumptions of mild nonlineuities, is able to 
guarantee stability and to ensure that the entire state of the 
new controller is aligned with the former state. The stability 
is established by virtue of the Youla-Jabr-Bongiomo-Kucera 
parameterization of all stabilizing controllers, which in the 
particular implementation in the present paper provides a 
novel and interesting separation principle. 

An interesting application of the bumpless transfer scheme 
is for smooth phasing in of a new control system to supple- 
ment and/or replace an existing control system at a large- 
scale plant, where downtime is expensive and safety is 
important. That is, the gain scheduling scheme could be 
implemented at the medium-to-high level of the control hier- 
archy, where the computational demands can be met easily, 
and ensure a smooth transition to a new and (hopefully) better 
performing closed-loop system. 

It should be noted that in a similar manner as the classical 
methods for bumpless transfer, it is straight-fonvard to in- 
corporate an anti-windup scheme. Since the control action is 
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composed by observer based action and integral action, both 
parts just have to be fed with the real (saturated) input. 

Finally, even if a gain-scheduling control design method 
with bumpless transfer is guaranteed to stabilize a large 
model class, there is never any guarantee for stability of the 
real plant. However, at least such a design method should 
guarantee stability while scheduling between controllers for 
a fied linear model. This is satisfied for the proposed 
method in contrast to several of the classical methods. In 
addition, the method updates the whole state vector, which 
the authors consider to be a sound approach. Future work 
will investigate the nature of parameter variations for which 
stability guarantees can he given for gain scheduling in 

between operating points, i.e., a rigorous examination of what 
constitutes a ”sufficiently well-behaved” system, as referred 
to in Section 11. 
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