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Abstract 

This paper deals with gain scheduling control of a power 
plant model, which is an example of a multi-dimensional 
nonlinear system. Linear observer-based controlters are de- 
signed for a number of linear approximations of the system 
model in a set of operating points, and gain-scheduling con- 
trol can subsequently be achieved by interpolating between 
each controller. We use the Youla-Jahr-Bongiomo-Kucera 
parameterization to achieve a smooth scheduling between 
the controllers. However, for multi-dimensional systems it 
is often not straightforward to obtain appropriate scheduling 
parameters. To address this issue, we propose a systematic 
approach to scheduling between controllers using multiple 
scheduling parameters. The approach is tested on a simple, 
but highly nonlinear model of a coal-fired power plant. 

1 Introduction 

Gain scheduling control is a celebrated approach to track- 
ing control of “well-behaved” nonlinear systems, which has 
been employed in numerous control applications. See e.g. 
[ 5 ]  for a general survey of gain scheduling control tech- 
niques. These schemes involve linearization of the sys- 
tem model in an appropriate set of operating points, fol- 
lowed by synthesis of one or more linear controllers for the 
system in these points, for instance using robust or opti- 
mal design methods (see e.g., [6]). However, it is impor- 
tant to note that, even if two stabilizing controllers K1 and 
A i  are designed for the same system, there is no guaran- 
tee that a simple linear combination of the two controllers 
K = aK1 + (1 - a)&, where cy E 10; 11 is a scheduling 
variable, stabilizes the system for 0 4 (Y < 1. 
(31 provided a framework for gain scheduling control based 
on the Youla-Jabr-Bongiomo-Kucera (YJBK) parameteri- 
zation of all stabilizing controllers. By using the YJBK 
parameterization of all stabilizing contmllers for the inter- 
polation it is possible to switch between individual stabiliz- 
ing conlrollers in a stable manner. [l] elaborated upon this 
idea by proposing a scheme thaf based on several linearized 
models extracted from an artificial neural network, provided 
the basis for the design of a number of controllers in differ- 
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ent operating points and subsequent gain scheduling using 
the YJBK parameterization. 
However, the results above considered the case where the 
scheduling parameter at any given time could be consid- 
ered a scalar. For multi-dimensional nonlinear systems it 
is often not straightforward to obtain appropriate, simple 
scheduling parameters. To address this issue, we intend 
to expand further upon the aforementioned ideas and pro- 
pose a systematic approach to scheduling between multiple 
controllers designed in different combinations of operating. 
points, for instance in a pdimensional grid. When the num- 
ber of controllers is greater than p ,  the number of schedul- 
ing parameters may become larger than the number of mea- 
surements specifying the operating point. In this paper we 
propose a performance functional that yields a unique, con- 
tinuous solution to the scheduling problem in any point in 
the operating space. When the current state of the plant is 
exactly at an operating point, the performance functional is 
minimized by choosing the controller in that operating point 
and all other scheduling parameters are set to 0. Elsewhere 
in the operating space the controllers are weighted such that 
the greatest emphasis is placed on the controller ‘closest’ to 
the current plant state. We also discuss how to handle in- 
tegrators in this framework. The gain scheduling approach 
proposed in this paper is tested on a very simple, but highly 
nonlinear model of a coal-fired power plant. 

2 Gain Scheduling Control 

In this section, we will provide a brief review of the frame- 
work established in [31, on which we base the controller 
synthesis. We will provide all results in this section in dis- 
crete time, although they are equally valid in continuous 
time. 

2.1 Basic Controller Parameterization 
Consider the system G with the state space realization 

where y E Iwpv is the measurement vector, U E Itm- is the 
control vector, v E IWP” is the signal to be controlled (which 



may coincide with y) and w E RP", is a disturbance vector 
containing noise and command signals. If the subsystem 
G,, given by the matrices (A ,  B,, Cy, Dyu) is stahilizahle 
and detectable, G can be stabilized by an observer-based 
feedback controller (see e.g. [6]). This setup is illustrated in 
the left part of Figure 1. 
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Figure 1: Left: The interconnection of the system G and the 

observer-based controller K ( Q )  = K * Q? where * 
denotes the star product [6]. Right: The controller is 
implemented using coprime factorizations of the con- 
holler and system. 

Let GyU(z) = CY(d - A)-'B, + D,, he written using 
coprime factorization as 

Gy,(t)  = NM-' = A I - ' #  (2) 

with N ,  A[, A?, N E RX,. Further, let a number of con- 
trollers for G,, be given by 

Ki(2) = u,V,-' = ?-loi, i = 0,. , . ,U (3) 

E RX-. These coprime factorizations where U,, &, ai, 
can he chosen to satisfy the double Bezout equation 

[ fi- -51 [" U;]-[" "1  [ i? -Ui]-[' 01 
-N AI N & -  N Vi -N A?? - 0  I 

for i = 0,. . . ,U. All stabilizing controllers for G,, based 
on any stabilizing KO can now be written according to the 
YJBK parameterization 

K(Q)  = I C * Q =  KO+V~~Q(I+V,-'NQ)-~V,' (4) 

i.e., the linear fractional transformation setup depicted in 
the left part of Figure 1. We now have the following result, 
adapted from [6]. 

Theorem 1 Let a number of stabilizing coritrollers (3) be 
given for a system (2). Then Ki, i = 0,. . . ,U can be im- 
plemented a s  K(Qi) =-IC * Qi, with Q; E RE, given by 
Q; = Vivo - V,Uo = V,(Ki - Ko)Vo. 

Proof: 
rewriting the expression as 

Follows by inserting Qi = G ( K i  - Ko)Vo in (4), 

K(Qi) = Kg + V;'fi(I + (Ki - K 0 ) N i / , ) - ' ( ~ ,  - K ~ )  

and using the Bezout identity to show that I + (K ,  - 
K0)NG = v,'q.  
Theorem 1 states that it is possible to implement any stahi- 
liring controller as a function of a stable parameter system 
Q based on another stabilizing controller, as depicted in the 
right part of Figure 1. This implies that it is possible to 
change between two controllers online, say, from KO to K,, 
in a smooth fashion hy scaling the Q, parameter by a factor 

In this paper we employ the YJBK theory to change from 
a controller designed in one operating point to another con- 
troller designed in a different operating point of a nonlin- 
ear system. Thus we implicitly assume that the nonlinear 
system is sufficiently well-behaved for the resulting gain 
scheduled controller to stabilize it in between the operat- 
ing points. This is not explicitly guaranteed by the YmK- 
parameterization, which only ensures stability while chang- 
ing controllers in one operating point. 

2.2 Multi-dimensional Gain Scheduling 
As long as the controller can be scheduled using a single 
parameter, e.g., a single output or reference signal, the im- 
plementation of the controller is fairly straightforward. The 
situation becomes more complicated when the scheduling 
has to take place using several scheduling parameters that 
are independent of each other, for instance if it is desired to 
control several outputs of a MIh40 system independently 
of each other. The situation can he illustrated as shown in 
Figure 2, where y denotes a measurement and (r) denotes an 
operating point. The left part of the figure shows a situation 

a E [O: 11. 

Figure 2: Single (left) and multi-dimensional (right) gain 
scheduling parameters. 

where the controllers KO and K1 have been designed in the 
operating points go and $, respectively. The scheduled 
controller is found according to (4) as K = K(aQ), such 
that K = KO when a = 0 and K = K(Q)  = K1 when 
a = 1. The scheduling parameter a itself is typically found 
as a simple linear scaling between go and pl. 
The right part of the figure, on the other hand, shows 
a situation with two measurements. The controllers 
Kii,a,j E { O , l }  have been designed in each of the four 
operating points ( $ , & ) > i > j  E (0,l). Assume that the 
gain scheduling is based on Koa. Since K11 is not a linear 
combination of Klo and K o ~  it is not sufficient simply 
to find ai, a2 E [0, l] as linear scalings between Bp and 
$ , i  E { O ,  1). It is necessary to include the scheduling 
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indicated by the 'vector' between the starting controller 
KOO and the controller K11 shown in the figure as well, 
yielding three scheduling variables. The scheduling vari- 
ables must he designed such that in each operating point, 
the other three controllers should be completely phased 
out, i.e., K = KOO for a1 = a2 = ag = 0, K = KO, for 
a1 = 0, a2 = 1,013 = 0, etc. Furthermore, they should be 
continuous everywhere in'tbe scheduling range in order to 
avoid introducing unnecessary disturbances in the control 
loop due to abrupt changes in the controller. 
To address this issue, a method of calculating the scheduling 
parameters yielding a continuous transition between each 
operating point, and which ensures the aforementioned 
phasing out of the other controllen in each operating point, 
is presented in the following. 

Theorem 2 Consider a set of n + k distinct, non-zero vec- 
tors 0 1 , .  . . ,v,+I: E R", where span{nl , .  . . , a,} = R". 
For any poirit x E In there exists a unique choice of coefi- 
cients a*, . . . ,a,+k, which niininiizes the functional 

subject to 

(6) 
i=I  

Moreover; this choice of a1, . . . , an+k is a continuousfunc 
tion of x for all x E R". 

Proof: Consider an arbitrary 2 E R", let a = 
[ai,...,CYnlT E R" and b = [@n+i,...,@n+k]T E Rk 
denote column vectors containing the first n and last k 
coefficients, respectively, and define the matrices A = 
COi{Vi,. . . , an} E RnXn and v = COl{U,+i,. . . , V n + k }  E 
RnXk. A is invertible since a1, . . , ,U, span R", and we can 
thus rewrite the condition (6) as x = Aa + Vb or 

a = A-' (x - Vb) . (7) 
Let X i ,  i = 1, . . . , n denote the i'th row vector of A-'. Eqn. 
(7) is inserted in eqn. (3, yielding 

and 

hf = 

Since the bottom k rows of M are diagonal, M can only 
lose column rank if one of the diagonal elements is zero, 
which may only happen if x is exactly equal to one of the 
vectors z',+~, . . . , U,+k. Assume x = u,,+~ for some r E 
{l, . . , , k} and observe that the 7'th column in the upper 
block in d f  is given as 

1 m, = diag{l/l: - ~ ( 1 , .  . . , 112 - a,Il}A- U,+,. 

Obviously, as vl,  . . . , ~ , + k  are distinct, x must be different 
from u1, . . . , z",. This implies that the product diag{ 112 - 
vl 11,. . . , Ijz - unl1}A-' has rank n, and since 211,. . . , u,+k 
are assumed to be non-zero, m, has rank 1 and Ad can be 
seen to have full column rank. 
The optimal least-squares solution (a*, b') to the quadratic 
optimization problem (5) thus exists, is unique and given as 

b' = ( d l T M ) - ' d l T C ,  a* = A-' (Z - Vb') . (8) 

Finally, to complete the proof we only need to note that 
since (a*, b') are given as products and sums of matrices 
that depend continuously on x, the solution must also de- 
pend continuously on I. m 

At any point in the space in which the operating points ex- 
ist, the choice of scheduling parameters given in eqn. (8) 
weights the 'closest' controller highest. Obviously, if the 
current state of the plant is exactly at an operating point, the 
performance functional is minimized by choosing the con- 
troller in that operating point and setting all other schedul- 
ing parameters to 0. In the following we will demonstrate 
the practical usefulness of the proposed scheduling method 
on a simulation model of a power plant, after addressing 
some implementation issues. 

2.3 Application 
Here, we outline the conshuction of Q and how to in- 
clude integral action in the controller in order to remove any 
steady state errors that might arise from unmodelled dynam- 
ics, etc. 
The integrator is included in the controller by augmenting 
the controller by an extra state defined as the integral of the 
control error e = y - yr..,, which corresponds to placing 
a controller pole in z = 1. However, we observe that both 
of the coprime factors Ui and in eqn. (3) must be sta- 
ble. This means that including an integrator on either side 
of the summing point in the middle of Figure 1 will add a 
pole in z = 1, violating the conditions for Theorem 1 to 
hold. However, it is possible to circumvent this difficulty by 
factorizing the integrator into the following coprime factor- 
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BUUFH ization: 

where 0 < T < 1, yielding pI,O1 E R'li,. Next, we 

U1 eq El KI 

Figure3 Theinterconnection ofrheconvollerK(Q) = K * K *  

e - C2o 

Ki . 

present how to find Q once a number of controllers have 
heen found in individual operating points. For reasons of 
clarity we present the method for two controllers designed 
for two operating points with linearizations (Ao,  B0,Co) 
and (AI,&, Cl), respectively, and one scheduling param- 
eter, hut the procedure is easily generalized to more con- 
trollers. Refer to Figure 3. Let K, the augmented controller 
on which we base the YJBK scheduling, be given as (see 
e.g. MI) 

K =  
C O  -I 

where A. + BoF0 and A0 + LOCO are stable matrices 
(i.e., the norms of all eigenvalues are less than one), and 
r I  E W p x P  represents the integrators included for each 
measurement output channel, factorized as described above. 
IC takes the signals e and uq as inputs and yields the out- 
puts U, which is applied to the  plan^, and eq. which is fed 
to Q. As depicted in Figure 1, K ( Q )  is formed as a lin- 
ear fractional transformation of h and Q scaled by a, i.e., 
K(aQ)  = K * (cy&). In particular, for cy = 0, the resulting 
controller becomes 

which can he recognized as a standard observer-based con- 
troller. Correspondingly, when a = 1 we must have 
K(Q) = KI  where 

Note that, in the LIT setup, K1 takes ep as input and yields 
UI as output. Hence we may find Q as Q = K * KI, where 

Figure 4: Coal-fired powerplant. 

Figure 5: Simplified model of boiler. 

I? is chosen such that KO * K is an identity system. Fairly 
straightforward calculations yield 

0 ) - I  O J  

where K takes u1 and the prediction error from KO as inputs 
and yields up and ep as outputs. 

3 Power Plant Control Simulation 

Figure 4 illustrates how the considered power plant works. 
Water is pumped from a feed water tank through a preheater 
and into the boiler. In the boiler, the water evaporates in 
the evaporator and the temperature is further increased in 
the superbeaters. The superheated steam is then expanded 
through the turbines, which drive a number of generators 
producing electricity. After the turbines the water is led 
back to the feed water tank. Figure 5 shows the simplified 
model of the boiler used here. The gas in the boiler room 
and the steam in the evaporator are lumped together into two 
average states. Assuming that the mass flow of the smoke 
(and ashes) equals the mass flow of coal and air, just three 
state variables are left: the temperature and density of the 
steam, T. and p u ,  along with the temperature of the smoke, 
Tg. The controlled inputs are the mass flow of coal, kc, and 
the mass flow of the feed water, kf. 
The heat flux from the coal and air is modelled as 

Q,  = mchc + maha, 

where h, and h, are the specific enthalpies of the coal and 
air, and in, is the mass flow of air. The heat flux of the 
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smoke is modelled as 

Q, = (*c + *a)cgTg, 
where cg is the specific heat capacity of the smoke. This 
gives the following time derivative of T,: 

(14) 
1 -- dTg - -(Qc - Qg - &U,), 

d t  cgmg 

where m, is the mass of the smoke (and ashes) and Qw is 
the heat flux through the evaporator wall modelled as 

4 4  &, = a,(T, - Td + %(Tg - T, ), 

where a, and e ,  are heat transfer coefficients of the wall. 
The time derivative of T, is modelled as 

where h,(T,, p.) is the enthalpy of the steam, h j  is the en- 
thalpy of the feed water, C, is the heat capacity of the wall, 
V i s  the volume of the evaporator, and m, the mass flow of 
steam out of the evaporator modelled as (ref. [ 2 ] )  

m s  = I% J F z i i E  
where P(T,, p,) is the pressure of the steam, PO is the pres- 
sure in the tank, and 0” is a flow coefficient. The final time 
derivative needed is that of p. which is simply ziven by 

By assuming 

h, = 2 5 M J / k g ,  h, = 570kJ /kg ,  
cg = 1280 J / ( k g K ) ,  m, = 1677kg, 
a, = 1 2 k W / K ,  t, = 0.00068 W / K 4 ,  
C, = 1 0 3 M J / K ,  V = 28 .3m3,  
hf = 1400kJ/kg ,  PO = 6.2A.IPa 

and 0, = 0.00031 k g K ’ / ’ / ( s P a )  to be constants we have 
a third order dynamical model given by Equations (14), 
(15), and (16). With calculated as a function of m, the 
model has two control inputs m, and m,. 
The values of the constants were found by fitting the model 
to measurement data from an actual 400 M W  power plant. 
The fitted model showed good agreement with the actual 
data, considering how simple it is. 
The method presented in Section 2 is applied to the sim- 
ulation model of the power plant. The control objec- 
tive is to maintain the steam temperature, T,, at 700K 
while keping the steam pressure at a desired reference 
value using the control inputs mf and m,. The oper- 
ating point is determined by the desired steam pressure, 
Pref E [225; 400]bar, and the enthalpy of the feed water, 
hf  E 1350 2100]kJ/kg. Four operating points are chosen: 
wi : (PVej = 4OObUT, h, = 2100kJ/kg), 202 : = 

Figure 6: First 30W s of simulation. Top: specific enthalpy of 
coal. Second: tbw coeffi cient. Third: Steam pressure. 
Bottom: Steam temperature. References shown with 
dashed lines. 

225ba~,hj = 350kJ/kg) ,  w3 : (P,,f = 400bur,hf = 
350kJ/kg), and w4 : (Pref = 225bar, hf = 2100kJ/kg). 
In each of these operating points a linearized model of the 
plant is obtained with a sampling period of 5s, and a discrete 
time LQRLQE controller with integral action is designed 
for the corresponding model with emphasis on disturbance 
rejection. The controllers are scheduled according to Ppef 
and h, using the method described in Section 2.2, with the 
controller designed for the operating point w~q as KOO. In 
the simulation P,,J and ht follow trajectories that stay at 
each operating point for 2560s and then slowly ramp to the 
next. While at an operating point the system is subjected 
to various disturbances illustrated in Figure 6 which shows 
operation at wq. The system is subjected to a 10% drop in 
the enthalpy of the cod, then P,,J is stepped up and down, 
and finally there is a 5% increase in the flow coefficient 
0,. Figure 7 shows the entire simulation going through the 
four operating p in t s  in the order wq + w~ * w3 -+ w ~ .  
Halfway between the operating points, the reference is kept 
constant for a shon period of time, and the system is sub- 
jected to the same disturbances as in the operating points. 
In the left plots, the gain scheduling is tumed off; only KOO 
is used. In the right plots, the controllers arc scheduled as 
described in Section 2. The top figure shows the schedul- 
ing weights found by the method described in Section 2.2. 
When the schednhg is tumed off, the performance is se- 
riously affected especially in w~ and during the transition 
from w2 to w3. With the proposed scheduling method, on 
the other hand, the transitions run smoothly and with good 
disturbance rejection, including in between the operating 
points. 
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Figure ’I: Simulation in entire operating range. The fi show 
f” lop to botrom: Scheduling weights, mass h?~w of 
coal, mass fbw of feed water, enthalpy of feed water, 
steam pressure, sream remperature, and s fem pressure 
e m .  In the left plots, only the 6 rst controller is used. 
In the right plots, the controller is gain-scheduled. 

4 Discussion 

This paper presented a systematic approach to multi- 
dimensional gain scheduling control, with application to 
e.g. power plant control. It is assumed that linearized 
state space models of a nonlinear system are available in 
a number of operating points, and corresponding stabilizing 
controllers have been designed in each of these operating 
points. 
It is then possible to exploit the YJBK-parameterization to 
achieve a scaling of the different controllers in each oper- 
ating point that is guaranteed to be stable. Although this 
approach strictly speaking still does not guarantee stabil- 
ity in between operating points, at least gain scheduling de- 
sign methods should guarantee stability while scheduling 

between controllers for a f i e d  linear model. This is satis- 
fied for the proposed method in contrast to several of the 
classical methods. However, for multi-dimensional systems 
it is often not straightforward to obtain simple scheduling 
parameters. In this paper, we presented a method to cal- 
culate the scheduling factors, which weights each controller 
according to the distance between the current plant state and 
the operating point of the controller. When the plant state is 
exactly equal to an operating point, only the corresponding 
controller is active. 
It was then demonstrated how to include an integration 
in the controller and how to derive the correct scheduling 
parameter system, based on linear fractional transforma- 
tions between individual controllers. The feasibility of the 
scheme was demonstrated on a simple, but highly nonlin- 
ear simulation model of a power plant. The model was lin- 
earized in four operating points characterized by high and 
low pressure, and high and low enthalpy of the feed wa- 
ter, respectively. Discrete time LQWLQE controllers were 
designed for this model with emphasis on disturbance re- 
jection, and the proposed scheme was implemented. It was 
seen that the performance was seriously deteriorated when 
the gain scheduling was tumed off. 
In practice, such a gain scheduling scheme could be imple- 
mented at the medium-to-high level of the control hierarchy, 
where the computational demands can be met easily. 
It should be pointed out that it is implicitly assumed that 
the transitions between the individual operating points must 
happen “sufficiently slowly” for the gain scheduling scheme 
to succeed. Further work would therefore involve consider- 
ing the scheme in the gain scheduling framework presented 
in e.g. [4]. Other future work will investigate the nature of 
parameter variations for which stability guarantees can be 
given for gain scheduling in between operating points. 
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