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Abstract— Joint optimization of both signature sequences and
linear receiver filters for a downlink DS-CDMA system with
multipath propagation channels is considered. The signature
sequences and the receiver filters are optimized in order to
minimize the sum of the mean-squared-errors at the output all
the receivers while maintaining a fixed total transmitting power.
The signature sequences and receiver filters are derived using a
filtering approach to accommodate for the multipath propagation
effects.

I. INTRODUCTION

In a downlink DS-CDMA system with orthogonal signature
sequences the performance is limited by multipath propagation
which introduces both multiaccess interference (MAI) and
intersymbol interference (ISI). Multiuser detection (MUD)
techniques which to a large extent remedies these effects
are well-known [1]. They combine interference rejection and
equalization by designing appropriate receivers only.

Instead we consider joint optimization of both signature
sequences and receiver filters in order to improve the overall
performance. The optimized signature sequences are found
using information about all the downlink channels and the
receiver filters are optimized using the information of their
corresponding channel only (coordinated transmission and
uncoordinated reception). The downlink channel information
is normally not accessible at the transmitter and thus this
scheme has clear practical limitations. However, for a time-
division-duplex (TDD) system the channel-impulse-responses
can be estimated from uplink transmission using the channel-
reciprocity. Alternatively, the estimated channel impulse re-
sponses can be fed back from the receivers to the transmitter,
which requires that the channels are sufficiently slowly time-
varying so that the amount of feedback information is low
compared to the data-rate.

The joint optimization is performed to minimize the mean-
squared-error (MSE) from the input to the output while
keeping the total transmitting power fixed.

Related investigations have been reported in [2], [3], [4], [5],
[6]. Fully coordinated transmitters and receivers for MIMO
systems are investigated in [3]. In this work the problem
formulation differs from our since the receivers are fully
coordinated, i.e. all the received signals are available to each
receiver.

In [4] the optimization is performed on symbol-level rather
than on chip-level with a linear transformation of the infor-
mation symbols. The multipath propagation is accommodated
using a block-based signal model. With this approach a
complete data-burst must be processed together, which can
be impractical.

In [5] the signature sequences are optimized together with
the receiver filters in order to minimize the total transmit-
ting power while keeping the sum of the MSEs below a
predescribed threshold. It is assumed that the effect of inter-
symbol-interference can be ignored, and thus the results might
not apply for systems with short spreading sequences com-
pared to the propagation channel delay-spread.

Related investigations are reported in [6] where the authors
find optimal transmitter and receiver filters. The problem
considered therein is significantly different from ours since
the authors consider peer-to-peer communications, e.g. a base-
station transmitting to one receiver and not a multiuser system
with a base-station transmitting to several receivers.

In our formulation of the problem we design optimal
transmitter and receiver filters using a filtering approach to
accommodate for the ISI and to avoid processing complete
data-bursts together. We minimize the sum of the MSEs
at the outputs of the different receivers while keeping the
transmitting power fixed. Our main contribution is to solve
this problem taking frequency-selective channels into account
without processing an entire data-burst at a time or ignoring
the effect of ISI. By means of simulations we demonstrate a
large performance gain over a traditional CDMA system where
only the receivers are optimized.

The following notation is used in the sequel: (·)T denotes
the transpose operator, (·)∗ denotes complex conjugation, (·)H

denotes complex conjugation followed by the transpose opera-
tor, ⊗ is the Kronecker product, col(·) is the column operator
which puts all the arguments into a column vector, scalars
and time-series are written using math-type font, vectors are
written as lower-case bold symbols and matrices are written
as upper-case bold symbols.

II. SIGNAL MODEL

We consider the discrete-time equivalent lowpass represen-
tation of a downlink system, where the transmitted signal is
the superposition of K synchronous DS-CDMA signals, see
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Fig. 1. Filter interpretation of downlink DS-CDMA system.

Fig. 1. The transmitted chip-rate signal can be written as

x[n] =
K∑

k=1

∞∑

i=−∞
bk[i]sk[n − iN ] (1)

where bk[i] denotes the ith information symbol of user k and
sk[n] is the corresponding spreading sequence of length N
chips with support {0, 1, . . . , N − 1}. Let βk[n] is the N -fold
upsampled version of bk[n]. Then (1) can be recast as

x[n] =
K∑

k=1

sk[n] ∗ βk[n]. (2)

In [7] a similar approach is used to design equalizers for
CDMA systems.

For simplicity we only consider BPSK modulation in the
following. The signal x[n] propagates to the different re-
ceivers through different channels, which can be represented
as transversal filters. Thus, after noise is added, the signal
received by user k can be written as

yk[n] = fk[n] ∗ x[n] + vk[n]. (3)

For convenience we consider the different channel impulse
responses fk[n] to have the same length L. The noise is
assumed to be circularly symmetric additive white Gaussian
noise with a variance σ2

k. In this correspondence we only
consider linear receivers.

Normally a linear receiver or equalizer is represented as
a non-causal transversal filter [8] followed by downsampling
in the case of fractionally spaced equalizers. In practice the
receiver filter is made causal by a time-shift, which introduces
a delay in the symbol estimates. Let such a non-causal
transversal filter be denoted by rk[n], then the equalized output
at the kth user is

zk[n] = rk[n] ∗ yk[n]. (4)

The equalization is performed to obtain a close replica of the
input

β̂k[n] ≈ βk[n], n = · · · − N, 0, N, . . . (5)

and the symbol estimates are obtained as

b̂k[j] = sign(β̂k[jN ]), j = . . . ,−1, 0, 1, . . . (6)

III. ALGORITHM

We wish to design signature sequences and receiver filters
that minimize the total mean-squared-error

K∑

k=1

E[|βk[jN ] − β̂k[jN ]|2]

while retaining the same transmitting power K. This is a non-
trivial biconvex optimization problem. In this paper we use
a suboptimal approach proposed by numerous authors, see
e.g. [2], [5], [3], [4].

We start by optimizing the signature sequences for fixed
receiver filters and then subsequently optimize the receiver
filters for fixed signature sequences. The two optimization
steps are iterated until convergence. In general this will not
give a global optimal solution for signatures and receivers
filters.

A. Optimizing signature sequences for fixed receivers

We start by fixing the receiver filters. They can be initialized
to e.g. random vectors. We combine the channel impulse
responses fk[n] and the receiver filters rk[n] and denote the
combined (non-causal) filter gk[n] to get the equivalent signal
model in Fig. 2.

s1[n]
β1[n] β̂1[n]

g1[n]

ṽ1[n]

sK [n]
βK [n]

gK [n]
β̂K [n]

ṽK [n]

Fig. 2. Signal model for fixed receivers.

Then, the sequence at the output of the ith receiver filter is

β̂i[n] =
K∑

j=1

sj [n] ∗ gi[n] ∗ βj [n] + ṽi[n] (7)
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with implicit definition of the filtered noise ṽi[n] = vi[n] ∗
ri[n]. Define ψij [n] = gi[n] ∗ βj [n]. Then

β̂i[n] =
K∑

j=1

sj [n] ∗ ψij [n] + ṽi[n]. (8)

If we further define sj = (sj [N−1], . . . , sj [0])T and ψij [n] =
(ψij [n − N + 1], . . . , ψij [n])T , where N is the length of the
signature sequences, we get

β̂i[n] =
K∑

j=1

sT ψij [n] + ṽi[n]. (9)

In order to isolate the input signal from (9) we write the
convolution as shown in (10) at the top of the following page.
In (10) the number of coefficients in gk[n] is G2 +G1 + 1 =
LR + L − 1 where LR is the number of coefficients for the
receiver filter rk[n] and L is the number of coefficients of the
propagation channel fk[n], i.e. the length of gk[n] is given by
the length of fk[n]∗rk[n]. For simplicity we assume the same
values of L, LR, G1 and G2 for all users.

We choose G1 such that βi[n] is the middle element of
βi[n], i.e. G1 = 	Lβ/2
 where Lβ = N + LR + L − 2.
This implicitely gives the value of G2 = LR + L − G1 −
2. Note that all users will have non-causal parts due to the
assumption of common filter lengths. The choice of G1 is not
unique. As for traditional equalization using inverse filtering,
the performance is highly dependent on this choice. For certain
channel realizations other choices might give better results, but
a brute-force approach trying all possible delays is clearly not
feasible.

We can now cast the output of the ith receiver filter as

β̂i[n] =
K∑

j=1

sT
j Giβj [n] + ṽi[n]. (11)

By defining

s = col(s∗
1, . . . , s

∗
K)

G = [IK ⊗ G∗
1 . . . IK ⊗ G∗

K ]
B[n] = IK ⊗ col(β1[n], . . . ,βK [n])
v[n] = col(ṽ1[n] . . . ṽK [n])

the vector of estimates can be written in a suitable form as

β̂[n]H = sHGB[n] + v[n]H . (12)

The signature sequences are found as the solution to the
following problem

minimize E[‖β[jN ] − β̂[jN ]‖2]
subject to sHs = 1.

The objective of the problem can be expanded as

σ2
β − sHGd − dT GHs + sHGEGHs +

K∑

k=1

‖rk‖2σ2
k

where d = E[B[jN ]β[jN ]], E = E[B[jN ]B[jN ]H ] and
‖rk‖2 is the sum of the squared filter weights for the kth re-
ceiver. Assuming uncorrelated input signals, i.e. E[bi[k]bj [k+
d]] = δ(i− j)δ(d), the vector d will be a vector consisting of
zeros and ones with K one-elements; one for each user. From
the definition of B[n] and β[n] the index of the one-element
corresponding to user i can be seen to be (i−1)(K+1)Lβ+G1
for i = 1, . . . ,K. Similarly, E will be a zero-matrix with one-
elements on part of the diagonal. These diagonal indices can
be computed as (i − 1)Lβ + (j − 1)KLβ + G1 + kN for
i, j = 1, . . . ,K and 1 ≤ (G1 + kN) < Lβ .

We thus have the following (non-convex) quadratic mini-
mization problem with quadratic equality constraints

minimize sHGEGHs − sHGd − dT GHs
subject to sHs = 1.

This problem is the well-studied trust region problem, see
e.g. [9, p.78], which has a solution for s as

s = (GEGH + νI)−1Gd (13)

where ν can be given the interpretation of a Lagrange mul-
tiplier to enforce the equality constraint. The value for ν can
be found efficiently using e.g. the Newton-Raphson algorithm.
Surprisingly, the trust region problem also has a simple closed
form solution in terms of eigenvalues of a special matrix. This
result is stated in the appendix without proof for brevity of
space.

B. Optimizing receiver filters for fixed signature sequences

Once the signature sequences are fixed, we design optimal
linear receivers. Let hij [n] = si[n] ∗ fj [n]. Then we get a
reduced signal model for deriving optimal linear receivers, see
Fig. 3.

β1[n] β̂1[n]

v1[n]

r1[n]h1,1[n]

βK [n]
hK,1[n]

Fig. 3. Reduced signal model for user 1. Signature sequences are fixed.

The output of the ith receiver filter is β̂i[n] = ri[n] ∗
(
∑K

j=1 hji[n] ∗ βj [n] + vi[n]). If we define

ri = (r[LR − G1 − 1], . . . , r[−G1])H

βj [n] = (βj [n − LH + 1 + G1], . . . , βj [n + G1])T

v[n] = (v[n − LR + G1 + 1], . . . , v[n + G1])T

Hji =




hji[LH − 1] . . . hji[0] 0

. . .
. . .

. . .
0 hji[LH − 1] . . . hji[0]
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ψij [n] =





gi[G2] gi[G2 − 1] . . . gi[−G1] 0
gi[G2] gi[G2 − 1] . . . gi[−G1]

. . .
. . .

. . .
. . .

0 gi[G2] gi[G2 − 1] . . . gi[−G1]





︸ ︷︷ ︸
Gi





βj [n − N + 1 − G2]
...

βj [n]
...

βj [n + G1]





︸ ︷︷ ︸
βj [n]

(10)

where LH = N + L − 1 then the output of the (non-causal)
receiver transversal filter can be written as

β̂i[n] = rH
i




K∑

j=1

Hjiβj [n] + vi[n]



 . (14)

We further define Hi = [H1i . . . HKi] and β̄[n] =
col(β1[n], . . . ,βK [n]) so that

β̂i[n] = rH
i

(
Hiβ̄[n] + vi[n]

)
. (15)

The receiver filters are obtained as the solution to the (convex)
quadratic unconstrained minimization problem

minimize E[|βi[jN ] − β̂i[jN ]|2]

which by computing the gradient and equating it to zero gives
a solution for the ith receiver filter as

ri = (HiEHH
i + σ2I)−1Hidi (16)

where di is a zero-vector with a one at position Lβ(i−1)+G1
and E is a zero-matrix with ones on the diagonal elements with
index Lβ(k − 1) +G1 + jN for k = 1, . . . ,K and 0 ≤ G1 +
jN ≤ Lβ . This receiver is the well-known MMSE receiver
[1] derived at chip-rate level and for multipath propagation
channels.

IV. SIMULATIONS

We consider short spreading codes of length N = 8 chips
and a fully loaded system, i.e. K = 8. The propagation
channels fi[n] have L = 5 taps. The taps are indepen-
dent Rayleigh distributed with exponentially decaying average
power as listed in the table below:

Tap index 1 2 3 4 5
Power [dB] 0 -2.17 -4.34 -6.51 -8.69

Every channel realization is normalized to unit power, i.e.∑L
l=0 |fi[l]|2 = 1, and for convenience all the receivers

operate with identical noise powers σ2. The receiver filters
are designed with 2N = 16 taps.

Referring to Fig. 2 we define cjk[n] = sj [n] ∗ gk[n]. As a
performance measure we use the SINR at the output of the
equalizers. For the kth user the SINR is given as

γk =
|ckk[0]|2∑

j �= k
i ∈ Z

|cjk[iN ]|2 +
∑

i∈Z\{0}

|ckk[iN ]|2 + ‖rk‖2σ2
k

.

(17)

where the different terms in the denominator account for the
multiaccess interference (MAI), the residual ISI for the user
of interest and the effect of the filtered noise, respectively.

In Fig. 4 we plot the output SINR averaged both over the
K users and 100 independent realizations of the downlink
channels. We average over many different channel realiza-
tions since the performance of the linear receivers is highly
dependent on the frequency characteristics of the channels,
and generally performs badly for channel transfer functions
with notches. For comparison we also plot the averaged SINR
for the traditional RAKE receiver and the MMSE receiver
both with orthogonal Walch codes. The MMSE receivers are
implemented using a sliding window similarly to (16) also
with 2N = 16 taps for a fair comparison with the proposed
algorithm.
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Fig. 4. Simulation results. Achieved SINR versus SNR averaged over all 8
users and 100 independent channel realizations.

In Fig. 5 we illustrate the variation in performance due
to different channel realizations for the same setup. The
plot shows histograms of the output SINR for the proposed
algorithm.

We observe a substantial gain by jointly optimizing the
signature sequences and the receiver filters, both in terms of
average performance and reduced variations.
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Fig. 5. Histograms of achieved SINR versus SNR. From top to bottom:
RAKE, MMSE and Jointly optimized signatures and receivers.

V. CONCLUSIONS

In this correspondence we have considered joint optimiza-
tion of both signature sequences and receiver filters for a
downlink DS-CDMA system with uncoordinated reception
using a filtering approach to accommodate for the effect of
multipath propagation.

The signatures sequences have been derived together with
the non-causal receiver transversal filters to minimize the sum
of the mean-squared errors at output of the different receivers
while keeping the total transmitting power constant.

The proposed algorithm achieves a substantial gain over a
more conventional system with Walch codes and e.g. MMSE
receivers both in terms of average performance, but also
through much smaller variations in performance due to dif-
ferent channel realizations.

However, the scheme has clear practical limitations since
the transmission requires knowledge of all the terminal noise
powers and downlink channels, but demonstrates that a signifi-
cant improvement can be obtained by also optimizing signature
sequences.

From our simulations we have noticed that a fairly large
number of iterations is required for convergence of the filters,
especially when the noise powers are small. In general it is
not expected that an alternating gradient method like ours
will result in a globally optimal solution but we made the
surprising observation, that the filters always converge to the

same solutions (for fixed channel realizations) after a very
large number of iterations. E.g. for the degenerate case where
fi[n] = δ[n] the signature sequences quickly converge to (non-
binary) orthogonal sequences and the receivers converge to the
corresponding time-reversed orthogonal sequences.

APPENDIX

In the trust-region problem we solve the problem

minimize xT Ax + 2bT x
subject to xT x = 1 (18)

in the variable x ∈ R
n where A = AT ∈ R

n×n and b ∈ R
n

are given. In [10] we show the following result, stated here
without proof.

Theorem 1: Let γ be the largest real eigenvalue satisfying

−
[

A I
bbT A

] [
u
v

]
= γ

[
u
v

]
(19)

with an associated eigenvector (u,v). Then γ is the optimal
Lagrange multiplier for the problem (18). If bT u �= 0 the
optimal solution to (18) is

x� =
v

bT u

and if bT u = 0 an optimal solution is

x� = −(A + γI)†b + αu

with α =
√

1 − bT (A + γI)†(A + γI)†b.
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