
GAIN SCHEDULING CONTROL OF NONLINEAR
SYSTEMS BASED ON NEURAL STATE SPACE

MODELS

Jan Dimon Bendtsen ∗ Jakob Stoustrup ∗

∗Department of Control Engineering, Aalborg University
Fredrik Bajersvej 7C, 9220 Aalborg East, Denmark.

Email: {dimon,jakob}@control.auc.dk

Abstract: This paper presents a novel method for gain scheduling control of nonlinear
systems based on extraction of local linear state space models from neural networks
with direct application to robust control. A neural state space model of the system is
first trained based on in- and output training samples from the system, after which
linearized state space models are extracted from the neural network in a number of
operating points according to a simple and computationally cheap scheme. Robust
observer-based controllers can then be designed in each of these operating points,
and gain scheduling control can be achieved by interpolating between each controller.
In this paper, we propose to use the Youla-Jabr-Bongiorno-Kucera parameterization
to achieve a smooth scheduling between the operating points with certain stability
guarantees.

Keywords: Robust Gain Scheduling Control, Neural Networks, Youla
Parameterization

1. INTRODUCTION

Many dynamical systems found in real-life appli-
cations behave roughly like linear systems in the
vicinity of an operating point, but exhibit satura-
tions and other forms of nonlinear behavior when
the state of the system diverges from the operating
point. Nonlinear control schemes such as feedback
linearization and backstepping, both of which rely
on explicit cancelation of nonlinearities, are often
used to deal with the nonlinear control problem,
but may run into difficulties in the presence of un-
modeled dynamics, parameter uncertainties, etc.
Another approach to control of such “reasonably-
behaved” nonlinear systems that is commonly
used in practice, involves linearization of the sys-
tem model in an appropriate set of operating
points, whereupon one or more linear controllers
for the system are designed in these points. It is
for instance possible to consider the linearizations
to be nominal (state space) models and then carry

out H2 or H∞ robust control synthesis, assuming
some kind of uncertainty model can be estimated
for the control design (see e.g., Zhou et al. (1995)).
The robust controller should be able to handle the
discrepancies between the nominal linear model
and the uncertain nonlinear system in the vicinity
of the operating point. If the closed-loop system
is expected to operate in several operating points,
it is possible to apply gain scheduling control, i.e.,
interpolating between the controllers in different
operating points as the system state moves from
one operating point to another (see e.g. Shamma
and Athans (1990)). In any of the aforementioned
approaches, however, the success of the control
scheme largely depends on the quality of the
model on which the control design is based, which
can sometimes be difficult to obtain in practice.

Artificial neural networks (ANN) such as multi-
layer perceptrons or neuro-fuzzy networks have
been shown to be able to model the kind of nonlin-



ear systems described above accurately. The idea
of training an ANN as a nonlinear state space
model of the plant and then extracting linearized
system models on which to base the controller
design in given operating points thus seems tempt-
ing, but does not appear to have received much
attention so far. Some work along these lines has
been presented in e.g. J. A. K. Suykens (1995).
The results presented tend to be conservative,
however, since the plant nonlinearities modeled by
the neural network are simply considered sector-
bounded disturbances to a single nominal linear
design, i.e., very little knowledge of the actual
nonlinearities is exploited in practice. Bendtsen
and Trangbaek (2002) also extracts a single nom-
inal linear plant from a trained neural state space
model, but considers the plant nonlinearities ex-
plicitly in a quasi-LPV framework, thereby re-
moving some of the conservativeness. However, as
will be pointed out in the following, it is possi-
ble to extract linearized state space models from
a trained neural network in a computationally
cheap and efficient manner in any number of op-
erating points. This means that it is feasible to
apply gain scheduling control based on the neural
state space model in a systematic manner.

In this paper, we propose a scheme that al-
lows us to design a number of controllers in
different operating points based on several lin-
earized models extracted from an ANN, and to
interpolate between them using the Youla-Jabr-
Bongiorno-Kucera (YJBK) parameterization. The
latter point is important, since even if two con-
trollers K1 and K2 are designed for the same plant
in the same operating point, there is no automatic
guarantee that a simple linear combination of the
two controllers K = αK1 + (1 − α)K2, where
α ∈ [0; 1] is a scheduling variable, stabilizes the
plant for 0 < α < 1. By using the YJBK pa-
rameterization of all stabilizing controllers for the
interpolation, however, it is possible to switch be-
tween individual (robustly) stabilizing controllers
in a stable manner.

The outline of the rest of the paper is as follows.
In Section 2 we describe the ANN framework and
how to extract local linearizations from a trained
network. After that, Section 3 gives a brief outline
of how to use the YJBK parameterization to de-
scribe all stabilizing controllers, and how to use
it to interpolate between individual controllers.
Also, the dual YJBK parameterization of all sys-
tems stabilized by a given controller is presented.
Section 4 then discusses the actual gain scheduling
control method and illustrates the method on a
simulation example, and finally Section 5 sums up
the conclusions of the work.

2. NEURAL STATE SPACE MODELS

We consider systems of the form

ẋ = f(x, u), y = Cx (1)

where x ∈ Rn is the state vector, u ∈ Rm is a
control signal and y ∈ Rp is the output vector of
the system. f(·, ·) : Rn×Rm → Rn is an unknown
smooth function of the states and control inputs
describing the system dynamics.

From neural network theory (see e.g. Lu and
Basar (1998)), it is known that we can ap-
proximate this function to a desired accuracy
with a single hidden layer multi-layer perceptron
(MLP) with q neurons (assuming q is chosen large
enough):

f̂(x, u) = Woσ (Wxx+Wuu+Wb) (2)

where Wo ∈ Rn×q contains the output layer
weights and Wx ∈ Rq×n,Wu ∈ Rq×m contain the
hidden layer weights, respectively. σ(·) : Rq →
Rq is a continuous, diagonal, static nonlinearity.
Wb ∈ Rq contains a set of biases which will allow
us to model non-odd functions with odd neuron
functions such as the hyperbolic tangent.

Alternatively, generalized linear models such as
neuro-fuzzy or radial basis function ANNs of the
form f̂(x, u) = θTφ

(
[xT uT ]T

)
, where φ(·) :

Rn+m → Rr maps the network inputs into a
vector of basis functions and θ ∈ Rr×n is a weight
matrix, can also be used. With obvious choices of
weight/bias matrices and neuron functions, these
ANNs can be written on the form (2). Refer to e.g.
Brown and Harris (1994) for further information
on this type of ANN model.

Assume now that an ANN has been trained (refer
to e.g. Levin and Narendra (1996) or Brown and
Harris (1994) for descriptions of training methods

etc. for ANNs) to satisfy ‖f(x, u) − f̂(x, u)‖∞ ≤
εmax, i.e., we can write

ẋ = f̂(x, u) + εx (3)

with εx ∈ Rn, ‖εx‖∞ ≤ εmax, representing mod-
eling errors, noise, and other uncertainties. An
estimate of εmax can for instance be obtained by
evaluating the ANN simulation performance on a
test set, i.e., comparing output samples simulated
by the ANN with actual samples measured from
the plant, which have not been included in the
training. We can then calculate the linearization
of f̂ around any operating point (x̄, ū) as

˙̃x≈ ∂f̂

∂xT

∣∣∣∣∣
x=x̄

x̃+
∂f̂

∂uT

∣∣∣∣∣
u=ū

ũ

=Wo
dσ(ξ)

dξT
Wxx̃+Wo

dσ(ξ)

dξT
Wuũ

= Â(x̄, ū)x̃+ B̂(x̄, ū)ũ (4)



where x̃ = x̄ − x and ũ = ū − u are the lo-
cally linearized state and input in the vicinity
of (x̄, ū), respectively. dσ(ξ)/dξT is the deriva-
tive of the neuron function mapping wrt. its in-
put ξ = Wxx̄ + Wuū + Wb and depends on
the choice of ANN. For instance, in case of an
MLP with hyperbolic tangent neuron functions,
we have σ(ξ) = diag(tanh(ξi)) and dσ(ξ)/dξT =
I − diag(tanh(ξi)

2), i = 1, . . . , q. The lineariza-
tion in (4) can be evaluated for other types of
ANN as well; e.g., in case of the neuro-fuzzy
model mentioned above, we would have [Â B̂] =
θT dφ(ξ)/dξT , where dφ(ξ)/dξT depends on the
choice of basis functions.

Remark 1 As can be seen, the evaluation of
the linearized models in the different operating
points is quite cheap, computationally speaking.
The stabilizability and detectability of the system
modeled by the ANN can thus be evaluated in any
appropriate part of the state space using eqn. (4).
In the following we will assume that the system is
stabilizable and detectable throughout the entire
region of interest. �

3. CONTROLLER PARAMETERIZATION

In this Section, we will provide a brief review
of the framework established in Niemann and
Stoustrup (1999), on which we base the controller
synthesis.

Consider a system G with the state space realiza-
tion 


ẋ
z
y


 =



A Bw Bu
Cz Dzw Dzu

Cy Dyw Dyu





x
w
u


 (5)

where x ∈ Rn is the state vector, y ∈ Rpy is
the measurement vector, u ∈ Rmu is the control
vector, z ∈ Rpz is the signal to be controlled
(which may coincide with y) and w ∈ Rmw is a
disturbance vector containing noise and command
signals. If the subsystem Gyu given by the matri-
ces (A,Bu, Cy, Dyu) is stabilizable and detectable,
G can be stabilized by an observer-based feedback
controller K with the state space realization (see
e.g. Zhou et al. (1995))
[
ẋc
u

]
=

[
A+BuF + LCy + LDyuF −L

F 0

] [
xc
y

]

(6)
where xc ∈ Rn is the controller state and A+BuF
and A + LCy are stable matrices. This setup is
illustrated in the left part of Figure 1.

Let Gyu(s) = Cy(sI − A)−1Bu + Dyu be written
using coprime factorization as

Gyu(s) = NM−1 = M̃−1Ñ (7)

with N,M, M̃, Ñ ∈ RH∞. Further, let a number
of controllers for Gyu be given by

G

K

� w�z

-

y

�

u

G

K

Q

� w�z

-
y

�

u

-

�

Fig. 1. The interconnection of the system G and
the controller K (left). The controller is pa-
rameterized by means of a star product be-
tween an augmented system K and a stable
parameter system Q (right).

Ki(s) = UiV
−1
i = Ũ−1

i Ṽi, i = 0, . . . , ν (8)

where Ui, Vi, Ũi, Ṽi ∈ RH∞. These coprime fac-
torizations can be chosen to satisfy the double
Bezout identity

[
I 0
0 I

]
=

[
Ṽi −Ũi
−Ñ M̃

] [
M Ui
N Vi

]

=

[
M Ui
N Vi

] [
Ṽi −Ũi
−Ñ M̃

]

for i = 0, . . . , ν. All stabilizing controllers for Gyu
based on K0 can now be written according to the
setup depicted in the right part of Figure 1, where
the controller K is parameterized by means of
a star product (cf. Zhou et al. (1995)) between
an augmented system K and a stable parameter
system Q:

K(Q) =K ? Q
=K0 + Ṽ −1

0 Q(I + V −1
0 NQ)−1V −1

0 (9)

K is chosen such that for Q = 0 we obtain the
controller K0. We now have the following result
(Moore et al. (1990)).

Theorem 1. Let a number of stabilizing con-
trollers (8) be given for a system (7). Then Ki, i =
0, . . . , ν can be implemented as K(Qi) = K ? Qi,
with Qi ∈ RH∞ given by

Qi = ŨiV0 − ṼiU0 = Ṽi(Ki −K0)V0.

Proof: Follows by inserting Qi = Ṽi(Ki −K0)V0

in (9), rewriting the expression as

K0(Qi) = K0+Ṽ −1
0 Ṽi(I+(Ki−K0)NṼi)

−1(Ki−K0)

and using the Bezout identity to show that I +
(Ki −K0)NṼi = Ṽ −1

0 Ṽi. �

Theorem 1 states that it is possible to implement
a controller as a function of a stable parameter
system Q based on another stabilizing controller.
This implies that it is possible to change between
two controllers online, say, from K0 to Ki, in a
smooth fashion by scaling the Qi parameter by
the factor α ∈ [0; 1]. Furthermore, as pointed out



in Niemann and Stoustrup (1999) it is not only
possible to change from K0 to Ki, but indeed from
any Ki to any Kj , i, j = 0, . . . , ν. In this case, we
compute the parameter Q as the following linear
combination of the Qi’s given in Theorem 1:

Q =
ν∑

i=1

αiQi,
ν∑

i=1

αi = 1, αi ∈ [0; 1].

Then the resulting controller is given as

K(Q) =

(
ν∑

i=1

αiṼi

)−1 ν∑

i=1

αiŨi. (10)

This controller will stabilize the system depicted
in Figure 1, giving rise to a closed loop transfer
function Tzw from w to z given by

Tzw = Gzw +GzuM

(
ν∑

i=1

αiŨi

)
Gyw (11)

where Gzw, Gzu and Gyw represent the transfer
functions of the subsystems of (5) from w to z, u
to z, and w to y, respectively.

As an analogy to the parameterization presented
above, the so-called dual YJBK parameterization
expresses all the systems parameterized by a given
controller as a function of a stable parameter.
Consider the system Gyu,0 factored as in (7),
and assume that the controller K0 factored as
in (8) stabilizes Gyu,0. Then all systems Gyu(S)
stabilized by K0 can be written as

Gyu,i(S) = Gyu,0 + M̃−1
0 S(I +M−1

0 U0S)−1M−1
0

(12)
where S ∈ RH∞ is the so-called dual YJBK pa-
rameter. The following result follows completely
analogously to Theorem 1, see Moore et al. (1990).

Theorem 2. Let a stabilizing controller K0 fac-
tored as in (8) be given for a number of systems
Gyu,i factored as in (7). Then Gyu,i, i = 0, . . . , ν
can be implemented as Gyu,0(Si), with Si ∈ RH∞
given by

Si = ÑiM0 − M̃iN0 = M̃i(Gyu,i −Gyu,0)M0.

Proof: The proof is omitted. �

4. GAIN SCHEDULING CONTROL

Based on the results presented in the previous two
Sections, we will now describe the gain scheduling
method proposed in this work in greater detail.
The method can be summarized as follows.

(1) Train an ANN state space model of the plant
to be controlled, and validate it using an
appropriate test set.

(2) Choose an appropriate number of operating
points (typically equilibrium points) and de-
termine the states and control signals in these

points, e.g., by using the ANN as a simulation
model.

(3) Extract linearized models in each operating
point using the weight matrices and neuron
function derivatives as presented in (4).

(4) Design controllers for each local linearized
model.

(5) Choose an appropriate scheduling variable
and implement the gain scheduled control
law as specified in Theorem 1 and (10).

The design should then be evaluated by simu-
lation and/or real-life tests. If the design does
not seem feasible, it may be possible to make
it feasible by choosing a finer grid of operating
points, thus obtaining a more smooth scheduling.
In this case it may be a help to use the dual YJBK
parameterization to examine the ‘range’ of sys-
tems that can be stabilized by a given controller,
in order to get an indication of how fine a grid of
operating points that may be required.

The method is now illustrated on a simulation ex-
ample. Inspired by Cabrera and Narendra (1999)
we choose the following nonlinear continuous-time
process

η̇1 =−η1 + η2 (13)

η̇2 =−η2 + η3 (14)

η̇3 =
η2

1 + η2
2 + η2

3 + tanh(u)

η2
1 + η2

2 + η2
3 + 1

− η3 (15)

y = η1 (16)

as our example plant, and simulate it with Mat-
Lab’s ode45 differential equation solver. The plant
itself is assumed to be unknown, and only input-
output information is assumed to be available. A
training set consisting of N = 5000 corresponding
samples of input and output is obtained from the
plant 1 by applying a low-pass filtered random in-
put signal to the plant, and sampling correspond-
ing input and output values at a sample frequency
of 2 Hz. Uniform random measurement noise in
the interval [−0.05; 0.05] is added, and an MLP
state space model with 5 neurons in the hidden
layer is trained to identify the model. The ANN
is trained according to the methods presented in
Levin and Narendra (1996), where the state vector
xk at sample time k, n ≤ k ≤ N , is constructed
from delayed samples of the measured output yk,
i.e., the discrete-time neural state space model is
formulated as

1 Training continuous-time neural network models imple-
mented on digital computers is not very practical. However,

the results presented in Section 3 apply equally well to
discrete-time systems, so the method can be employed for

sampled-data systems as long as the intersample behavior
of the system is sufficiently smooth.



xk =
[
yk yk−1 yk−2

]T

µk =
[
uk uk−1 uk−2

]T

x̂k+1 =Woσ (Wxxk +Wuµk +Wb)

ŷk = x̂1,k

with ·̂ denoting estimates. The ANN is trained 50
epochs with the Levenberg-Marquardt algorithm
and validated using a test set. Figure 2 shows a
simulation of a test set, where the state estimate
from the ANN is fed back and used as input to
the network:

x̂k+1 =Woσ (Wxx̂k +Wuµk +Wb)

εk = yk − x̂1,k.

For comparison purposes, a linear model is identi-
fied using the same training set. The same test set
is simulated and the output of the linear model is
plotted in Figure 2. As can be seen, the ANN is not
a perfect simulation model, but at least superior
to the linear model.

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

1
Test set simulation

O
ut

pu
t y

0 100 200 300 400 500 600 700 800 900 1000
−0.6

−0.4

−0.2

0

0.2

0.4

S
im

. e
rr

or

Time [sec]

Fig. 2. Top: open-loop simulation of the test
set (green dotted line) by the linear (blue
dash-dot line) and the MLP model (red full
line). Bottom: open-loop simulation errors for
the linear (blue dash-dot line) and the MLP
model (red full line).

The next step is then to linearize the model in a
number of relevant operating points (x̄i, ūi) using
the weight matrices and derivative of the neuron
mapping as shown in eqn. (4). For simplicity,
we only linearize around two equilibrium points,
given by ȳ0 = 0.25 and ȳ1 = 0.75. By supply-
ing constant control signals to the ANN model,
we find (x̄0, ū0) = ([0.25, 0.25, 0.25]T , 0.14) and
(x̄1, ū1) = ([0.75, 0.75, 0.75]T , 0.31).

Two observer-based controllers, K0 and K1, of the
form (6) are then designed in these two operating
points. Since the only information about noise and
modeling error assumed to be available to the

control design is the simulation error shown in
Figure 2, we choose to design the controllers using
LQG optimal control design methods. That is, the
feedback and observer gains F and L are chosen
such that the H2 norm of the closed loop system
gain from w to z given in (11) is minimized. The
controllers are augmented with integral states in
order to remove steady-state errors.

Finally, we choose the scheduling variable α. Since
we are interested in controlling the output yk, the
simplest choice of α at sample k is

αk =
‖yk − ȳ0‖2
‖ȳ0 − ȳ1‖2

.

The controller is thus parameterized at each sam-
ple instant according to

K0 = Ṽ −1
0 Ũ0

K1 = Ṽ −1
1 Ũ1

K(Qk) =
(
αkṼ0 + (1− αk)Ṽ1

)−1

×
(
αkŨ0 + (1− αk)Ũ1

)
.

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

1

u,
 α

0 50 100 150 200 250
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y r, y

Time [s]

Fig. 3. Simulation of the controlled system. Top:
scheduling variable α (green full line) and
control signal u (red dash-dot line). Bottom:
reference signal yr (blue dash-dot line) and
controlled output y (red full line).

Figure 3 shows a simulation of the plant controlled
by the gain scheduled controller. At each sample
instant the plant output (including measurement
noise) is sampled, αk is calculated and the in-
terpolated controller is found according to the
scheme given above; then the plant response to
the zero-order-hold control signal uk is simulated
in continuous time for one sample period. The
initial states were set to 0. The reference was
chosen as a series of steps, such that the output
should reach the first operating point first, then
the second operating point, then back to the first,
and finally settle in between the two operating
points. The scheduling variable is plotted together



with the control signal. As can be seen, the control
loop stabilizes the plant without difficulties, even
in between the operating points. The controllers
K0 and K1 could probably be tuned more aggres-
sively, but the simulation is sufficient to demon-
strate that the gain scheduling scheme works.

5. DISCUSSION

This paper presented a novel use of neural state
space models for gain scheduling control. It is
assumed that a neural state space model of a
nonlinear system can be trained based on in-
and output training samples from the system,
after which local linearized state space models are
extracted from the neural network in a number
of operating points according to a simple and
computationally cheap scheme. Controllers can
then be calculated based on e.g.H2 theory in each
of these operating points, such that they stabilize
the system in that operating point in the presence
of noise etc.

It was then discussed how the YJBK-parameteri-
zation can be exploited to achieve a scaling of the
different controllers in each operating point that
can be guaranteed to be stable. It was also sug-
gested to use the dual YJBK-parameterization to
evaluate whether a given controller will stabilize
the systems between a set of operating points.
This provides a tool for checking whether the
overall design is sufficient, or further refinement is
required. Finally, the feasibility of the method was
demonstrated on a simulation example involving
a continuous-time plant modeled by a discrete-
time multi-layer perceptron and a corresponding
discrete-time YJBK-parameterized gain schedul-
ing controller.

It should be pointed out that the work presented
in this paper is merely a preliminary presenta-
tion of the basic gain scheduling scheme based
on neural state space models. Further work will
be needed to provide strict stability proofs in the
presence of (bounded) modeling errors, for in-
stance by considering more stringent uncertainty
models that can be used for robust H∞ synthesis.
Other future work will involve gain scheduling in
multi-dimensional systems and research into how
to switch between different controllers in order to
keep the overall controller order low.

Furthermore, it is implicitly assumed that the
transitions between the individual operating points
must happen “sufficiently slowly” for the gain
scheduling scheme to succeed. The YJBK scheme
does not guarantee stability when scheduling in
between operating points, only when switching in
an operating point. Further research should there-
fore address this issue, possibly by considering

the scheme in the gain scheduling framework pre-
sented in e.g., Shamma and Athans (1990) or the
LPV framework of Apkarian and Gahinet (1995).

References

P. Apkarian and P. Gahinet. A convex char-
acterization of gain-scheduled h∞ controllers.
IEEE Transactions on Automatic Control, 35:
898–907, 1995.

J. D. Bendtsen and K. Trangbaek. Robust quasi-
lpv control based on neural state space models.
IEEE Transactions on Neural Networks, 13:
355–368, 2002.

M. Brown and C. Harris. Neurofuzzy Adaptive
Modelling and Control. Prentice-Hall Interna-
tional, 1994. ISBN 0-13-134453-6.

J. B. D. Cabrera and K. S. Narendra. Issues in
the application of neural networks for tracking
based on inverse control. IEEE Transactions on
Automatic Control, 44:2007–2027, 1999.

B. De Moor J. A. K. Suykens, J. Vandewalle.
Nonlinear system identification using neural
state space models, applicable in robust control
design. International Journal of Control, 1:129–
152, 1995.

A. U. Levin and K. S. Narendra. Control
of nonlinear dynamical systems using neural
networks—part ii: Observability, identification
and control. IEEE Transactions on Neural Net-
works, 7:30–42, 1996.

S. Lu and T. Basar. Robust nonlinear sys-
tem identification using neural network models.
IEEE Transactions on Neural Networks, 9:407–
429, 1998.

J. B. Moore, K. Glover, and A. Telford. All
stabilizing controllers as frequency shaped state
estimate feedback. IEEE Transactions on Au-
tomatic Control, 35:203–208, 1990.

H. Niemann and J. Stoustrup. An architecture
for implementation of multivariable controllers.
In Proc. of the American Control Conference,
1999.

J. S. Shamma and M. Athans. Analysis of gain
scheduled control for nonlinear plants. IEEE
Transactions on Automatic Control, 35:898–
907, 1990.

K. Zhou, J. Doyle, and K. Glover. Robust And
Optimal Control. Prentice-Hall International,
1995. ISBN 0-13-456567-3.


