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Absnacf-In (passive) fault tolerant control design, the 
objective is to find a fixed compensator, which will maintain a 
suitable performance - or at least stability - in the event that a 
fault should occur. A major theoretical obstacle to obtain this 
objective, is that even if the system models corresponding to the 
occurrence of various faults are simultaneously stahilizable by 
a linear, time-invariant compensator, this compensator might 
have to he of very high order, as shown in a recent publication. 
In this paper, we propose a design procedure for a time- 
varying compensator, which overcomes the obstacle for any 
finite number of faults with a controller order of no more 
than the plant order. The performance of this compensator 
might he poor, hut a heuristic procedure for improving the 
performance is also shown, and an example demonstrates that 
this improvement can he truly significant. 

I. INTRODUCTION 

The interest for using fault tolerant controllers is increas- 
ing. A number of theoretical results as well as application 
examples has now been described in the literature, see e.g. 
VI, PI, PI, NI, P I ,  PI, U], PI, D1, [IO1 to mention some 
of the relevant references in this area. 

The approaches to fault tolerant control can be divided 
into two main classes: Active fault tolerant control and 
passive fault tolerant control. In active fault tolerant control, 
the idea is to introduce a fault detection and isolation block 
in the control system. Whenever a fault is detected and 
isolated, a supervisory system takes action, and modifies 
the structure andor the parameters of the feedback control 
system. In contrast, in the passive fault tolerant control 
approach, a fixed compensator is designed, that will main- 
tain (at least) stability if a fault occurs in the system in 
consideration. 

This paper will only discuss the passive fault tolerant 
control approach, also sometimes referred to as reliable 
control. This approach has mainly two motivations. First, 
designing a fixed compensator can be made in much simpler 
hardware and software, and might thus be admissible in 
more applications. Second, classical reliability theory states 
that the reliability of a system decreases rapidly with 
the complexity of the system. Hence, although an active 
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fault tolerant control system might in principle accomodate 
specific faults very efficiently, the added complexity of the 
overall system by the fault detection system and the su- 
pervisory system itself, might in fact sometimes deteriorate 
plant reliability. 

In [ I l l ,  a fault tolerant control problem has been ad- 
dressed for systems, where specific sensors could potentially 
fail such that the corresponding outputs were unavailable 
for feedback, whereas other outputs were assumed to be 
available at all times. 

In [E, Sec. 5.51, the question of fault tolerant parallel 
compensation has been discussed, i.e. whether it is possible 
to design two compensators such that any of them alone 
or both in parallel will intemally stabilize the closed loop 
system. 

In a recent paper [13], it was shown that on one hand, 
under mild conditions (stabilizability, detectability), a Linear 
time-invariant (LTI) finite-dimensional controller always 
exists which stabilizes the system both in the nominal 
situation, as well as in case any one sensor should fail (a 
dual result is given for actuator faults). On the other hand, it 
was also shown in [I31 that even for a second order system, 
the required controller order to achieve this simultaneous 
stabilization can be unbounded. 

Since very high controllers orders are often unacceptable 
for a number of good reasons, we propose in this paper 
instead to use a linear time-varying (LTV) fault tolerant 
compensator, and show that this type of compensator - in 
contrast to the time-invariant case - can be designed with 
a controller order of at most the same as the plant. The 
approach is based on the ability of LTV compensators to 
achieve simultaneous stabilization of several systems. A 
seminal paper in this context was [14], where the authors 
showed that for every finite set of plants, a linear time- 
varying controller can be designed which provides closed 
loop stability. For further literature regarding LTV con- 
trollers - see the references in [14]. 
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11. PROBLEM FORMULATION 

In the sequel, we shall consider systems of the form: 

Thus, we shall restrict attention to discrete time systems. 
The proposed methodology, however, carries over to con- 
tinuous time systems with only minor modifications. 

It is assumed that the system (1) might fail in one of 
several a priori known ways. The faults could be actuator 
faults, sensor faults, or intemal faults, which change the 
dynamics of the system. In either case, the faulty system 
will be described by a model of the form: 

The fault tolerant problem considered in this paper is 
to find a linear (but not necessary time-invariant) feedback 
compensator, which stabilizes the nominal system (l), but 
which also preserves stability if any one of the faults 
described by the models of faulty system (2) occurs. 

111. MAIN RESULT 

Theorem I: Consider an npth order faulty system I: with 
a nominal model of the form (1). Assume that the system 
can fail in one among q possible ways, each giving rise to 
a model &,i = 1,. . . , q  of the form (2). Further, we assume 
that the q+ 1 models X i ,  i = 0,. . , , q  are all stabilizable and 
detectable. Then, there exists a time-varying compensator of 
order at most np. such that the closed loop system remains 
stable even if one of the q faults should occur at one time 
instance. 

Pmof: Since there is no infinite switching between 
models going on, the stability condition reduces to asymp- 
totic stability for each of the q f 1 individual closed loop 
systems formed by the compensator and either the nominal 
or one of the faulty systems. Hence, Theorem 1 can be 
reduced to a simultaneous (or multi-model) stabilization 
problem, for which it is actually well-known in the control 
community, that an nth order linear, time-varying compen- 
sator always suffices. We shall, however, repeat the proof 
here since it is simple, and more importantly, since it is 
constructive and will be used in the sequel. 

To that end, we shall without loss of generality assume 
that the models both of the nominal and .of the faulty 
systems are minimal. Let Ko,K,, . . . ,K4 be linear, time- 
invariant compensators with a minimal model of the form: 

such that KO is a dead-beat controller (can be achieved due 
to minimality) for the nominal system, 

x ( k + l )  = A,&) + Bp,o.(k) 
Y ( k + l )  = Cp,ox(k) 

and such that for i = 1,. . . ,q,  Ki is a dead-beat controller 
for & 

x(k+l )  = AP,ix(k) + 
y(k+1) = Cp,ix(k) 

Thus, each of the q +  1 models and corresponding con- 
trollers generates a closed loop system of the form 

has the property: 

A"?=O, Cl,, i = O ,  . . . , q  (4) 

where n, is the (largest) order of the q + 1 time-invariant 
compensators. 

We now introduce the following time-varying compen- 
sator: 

5(k+1) Ac(k)S(k) + Bc(k)Y(k) 

( 5 )  

Thus, as described in (6), each controller is repeated np +n, 
times in a cycle through all q + 1 controllers. 

Now, it is easy to see, that the closed loop system 
resulting from joining KTV and the nominal system or either 
of the faulty systems: 

must converge to the origin in finite time from any initial 
state, since 

x(q(nP +"C) + 1) 
5(q(nP+nd + 1) 

will contain at least one of the sequences (4), and therefore 

Thus, K m  is fault tolerant compensator, which stabilizes 
the system in the nominal situation, and preserves stability 
in the event that any of the q faults occur. 

We shall use this constructive proof in the design pro- 
cedure described below. As a consequence, the design will 
be based on a number of LTI dead-beat controllers, each 
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acting in a certain time interval. However, it is well-known 
that dead-beat controllers are not always robust, and that 
they may shown violent transients if the plant is not very 
well known. It is therefore worthwhile observing that the 
dead-beat property is convenient in the proof above but not 
strictly necessary. In practice, it is only necessary to make 
the poles 'sufficiently small'. To be more specific, stability 
can be guaranteed, if the product of the largest singular 
values of possible sequences all are bounded by 1.  

The continuous time case can be handled in much the 
same manner, although an equivalent to the dead-beat 
controller is lacking. Instead, the stability argument can be 
established by considering state transition matrices of the 
form 

@; = exp(A,I,;Z) 

where A,IJ is the closed loop system matrix in the ith time 
interval, and is the duration of that time interval. Just like 
in the discrete time case, the product of the largest singular 
values of the ai's for all possible sequences then must be 
bounded by 1. 

Iv. DESIGN PROCEDURE 

The specific LTV compensator proposed in the proof 
of Theorem 1, which is described by ( 5 )  and (6), is only 
guaranteed to stabilize the faulty system. It might, however, 
be rather poor in terms of performance. The reason for 
this is, that the nominal compensator is only in operation 
in a fraction of the time which is I, Thus, if the LTI 
compensators designed for the faulty h a t i o n s  are highly 
suboptimal in the nominal situation, then also the perfor- 
mance of the LTV compensator will be rather suboptimal. 
In this section, we shall approach the performance problem 
by means of time-scheduling. 

The LTV fault tolerant scheme suggested in this paper 
will inevitably introduce a trade-off between performances 
in the nominal and the faulty situations. One way to 
overcome part of this dilemma is to make a multi-model 
design in the first case, rather than designing the q + 1 LTI 
controllers entirely independent. A description of the large 
number of methods for multi-model design falls outside the 
scope of this paper, and in the sequel we shall assume that 
the q + 1 LTI compensators are given and fixed. 

An entirely different handle, however, to improve per- 
formance of the LTV fault tolerant compensator suggested 
above, is to modify the number of samples, each of the 
individual LTI compensators is applied in each cycle. 

To that end, we propose a heuristic (re-)design procedure, 
which is an iterative scheme, based on a quantification on 
how poorly each LTI compensator is performing in the 
loops, for which it was not designed. 

In particular, we shall study the following square matrix: 

where &,;j denotes the state transition matrix for the closed 
loop system achieved by joining the ith system (see (I) 
and (2)) with the j th LTI compensator (see (3)), and the 
design parameters ro,. . . , r9  are integer powers. Each r; 
indicates the number of repetitions of controller K; in each 
cycle. To be more specific, the controller proposed has the 
form: 

and 
first cycle 

j( .)  = o ,... ,o, I , .  . . , I , .  . . ,q,. . . ,;,o,. . . ,o,. . . 

and where A,,,, B,, j ,  and Cc,j are the controller parameters 
introduced in (3). 

The following algorithm iterates on the duration of each 
LTI controller by evaluating T as defined in (7). 

Algorithm 1 (Time-scheduling): 
1) Choose a minimal and a maximal duration, rmin and 

2) Choose a set of initial values for the durations 

3) Compute T as defined in (7) 
4) Find the largest value in T and note the corresponding 

indices (i-, jmm) 
5 )  Find the column in T with the property that its largest 

value is smallest among all the columns and note the 
corresponding index jmi. 

6) Decrease rim- andor increase rjmin, if rim > ',,,in and 
rjfin < rma. If the latter is not the case, Steps 4 and 5 
are repeated with the corresponding columns removed 

7) Repeat from Step 3 unless indices did not change in 
past iteration 

It should be noted that the algorithm is heuristic, based 
on the assumption, that it will help to reduce the influence 
of the LTI controllers that performs poorer on other systems 
than they were designed for. The algorithm does not guar- 
antee optimality and in some cases, the resulting controller 
might not even be stabilizing. Stability, however, can be 
guaranteed if the following two measures are taken: 

1) Each LTI controller is choosen as a dead-beat con- 

2)  r,i. is chosen at least as large as np + n, 

-- -- 
at imes  T I  times ,,times rotimes 

rmm, resp., for the LTI controllers 

ro, . . . rq 

troller 

With these two precautions, stability can be proved among 
the same lines as Theorem 1. 

V. EXAMPLE 
The example in this section is chosen to illustrate the 

following points: 
1796 



. The LTV scheme in this paper can he used for stahiliz- 
ing a system for which the alternative LTI compensator 
might be of high order 
Performance might not he excellent, if the individual 
LTI controllers are not chosen to satisfy some reason- 
able cross-performance 
Performance can be improved by the algorithm de- 
scribed in Section N 

Thus, the example should not he seen as an ideal and 

The system in consideration is the following: 
realistic design study. 

x ( k + l )  = ( 

with the following transfer matrix: 

For this system, it is assumed that the two sensors corre- 
sponding to the two outputs can both fail. Notice, that the 
system degades to an unstable, non-minimum phase system 
in either of the two faulty situations. In [13] it is shown 
that systems of this type might require LTI controllers of 
arbitrarily high order just to achieve (fault-tolerant) stability. 
In the sequel, we shall demonstrate a systematic design of 
an LTV controller of order at most np. 

First, we design three LTI compensators for each of the 
three situations: 

-10.63 
= & ( 5.375 ) 

I ( -21.37;+ 10.75 
K ,  = A +2.5r-16.13 

1 Kz = 

which are dead-heat compensators for the nominal situation, 
the situation where only the sensor corresponding to y~ 
functions, and the situation where only the sensor corre- 
sponding to yz functions, respectively. 

ro = rl = r2 = 6 

Starting Algorithm 1 with the following values: 

gives the following matrix of norms of powers: 

1 ( 4.0792e+003 4.8727e+004 0 

6.2373e - 015 0 0 
T = 1.4326e + 003 0 8.1391e+004 

A simulation with 180.000 samples and gaussian noise on 
both plant states shows the following variances on the first 
output variable (its 'real' value - whether the sensor shows 
it or not): 
Variance for nominal system: 4.2537e - 007 
Variance if only first sensor functions: 1.3058e+007 
Variance if only second sensor hc t ions :  1.1956e+010 

It can be seen that although stability in theory is obtained, 
the variances are so large that the system in practice most 
likely will he unstable. 

After some iterations, the algorithm stops at the following 
values: 

r o = O ,  r l = 4 ,  r 2 = 4  

giving the following matrix of norms of powers 

1.0000e+000 0 0 

0 ) T = 1.0000e + 000 0 2.7330ef003 ( 1.0000e + 000 1.6108e+ 003 

A simulation with 80.000 samples and state noise as above 
gives the following,variances: 
Variance for nominal system: 8.9325e - 007 
Variance if only first sensor functions: 1.9303e+000 
Variance if only second sensor functions: 2.4521e+000 

It can be seen that now that the output variances are 7 - 
10 orders of magnitude smaller. The price, however, is a 
doubling of the output variance in the nominal case. 

Figure 1 shows a simulation for the same system and with 
the same controllers, but with the time scheduling parame- 
ters set as: rg = 2, rl = 4, rz = 4. The excitation is sinusoidal 

I 
20 40 50 80 1w 

0.4 1 I 

I 
20 40 60 80 100 

-0.41 

I I 

(0 -0.5 

Fig. 1. Simulation with sinusoidal excitation. Note the highly different 
scales in the three cases. The significant transients are caused by the 
aggressive nature of the dead-beal controllers 
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and thus smooth. Nevertheless, significant transients occur 
which are due to switching hetween dead-beat controllers. A 
less aggressive design would have given slower responses, 
but less over-shoot. The overall conclusion, however, is that 
the fault tolerant control scheme functions as predicted. 

VI. CONCLUSIONS 
In this paper, we have demonstrated the existence of fault 

tolerant LTV controllers, which can be designed to be of 
low order. The LTV controller is a periodic compensator, 
which cycles hetween a number of LTI controllers. Each LTI 
controller is designed for one situation - either the nominal 
situation or one of the faulty situations. To obtain a good 
overall performance, however, these controllers should be 
designed to give a reasonable cross-performance. 

A time-scheduling algorithm was proposed, that usu- 
ally is able to improve the performance significantly, as 
compared to a parsimonious LTV controller, which allo- 
cates equal time slots to each LTI controller. It should 
be emphasized, though, that the proposed time-scheduling 
optimization is entirely heuristic, and will not lead to 
optimality in all circumstances. 

To improve the time-scheduling, a cumbersome approach 
is to go through the process of comparing all possible 
combinations by applying a lifting technique to compute 
the norms of the corresponding periodic systems. An alter- 
native, kindly suggested by one of the anonymous reviewers 
of this paper, would be to use genetic algorithms (GA) to 
improve the performance, where the GA could be set up to 
find the numher of samples. The matrix (7) could then be 
used as a performance index. 
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