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Absfracf-This paper discusses the problem of designing 
fault tolerant compensators that stabilize a given system both 
in the nominal situation, as well as in the situation where one 
of the sensors or one of the actuators has failed. It is shown 
that such compensators always exist, provided that the system 
is detectable from each output and that it is stabilizable. The 
proof of this result is constructive. A family of second order 
systems is described that requires fault tolerant compensators 
of arbitrarily high order. 

I. INTRODUCTION 

The interest for using fault tolerant controllers is increas- 
ing. A number of theoretical results as well as application 
examples has now been described in the literature, see e.g. 
[I], PI ,  PI ,  PI ,  [SI, [GI, [71, [81, [9], 1101 to mention some 
of the relevant references in this area. 

The approaches to fault tolerant control can be divided 
into two main classes: Active fault tolerant control and 
passive fault tolerant control. In active fault tolerant control, 
the idea is to introduce a fault detection and isolation block 
in the control system. Whenever a fault is detected and 
isolated, a supervisory system takes action, and modifies 
the structure and/or the parameters of the feedback control 
system. In contrast, in the passive fault tolerant control ap- 
proach, a fixed compensator is designed, that will maintain 
(at least) stability if a fault occurs in the system. 

This paper will only discuss the passive fault tolerant 
control approach, also sometimes referred to as reliable 
control. This approach has mainly two motivations. First, 
designing a fixed compensator can be made in much simpler 
hardware and software, and might thus be admissible in 
more applications. Second, classical reliability theory states 
that the reliability of a system decreases rapidly with 
the complexity of the system. Hence, although an active 
fault tolerant control system might in principle accomodate 
specific faults very efficiently, the added complexity of the 
overall system by the fault detection system and the su- 
pervisory system itself, might in fact sometimes deteriorate 
plant reliability. 
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In [Il l ,  a fault tolerant control problem has been ad- 
dressed for systems, where specific sensors could potentially 
fail such that the corresponding outputs were unavailable 
for feedback, whereas other outputs were assumed to be 
available at all times. 

In [12, Sec. 5.51, the question of fault tolerant parallel 
compensation has been discussed, i.e. whether it is possible 
to design two compensators such that any of them alone 
or both in parallel will intemally stabilize the closed loop 
system. 

The existence results given in [I 11, [12] mentioned above, 
can be considered to be special cases of the main results of 
this paper. 

In this paper, we shall consider systems for which any 
sensor (or in the dual case any actuator) might fail, and we 
wish to determine for which systems such (passive) fault 
tolerant compensators exist. The main results state that the 
only precondition for the existence of solutions to this fault 
tolerant control problem is just stabilizability from each 
input and detectability of the system from each output. 

11. NOTATION 

Throughout the paper, % P p x m  shall denote the set of 
proper, real-rational functions taking values in C P X m ,  and 

shall denote the set of strictly proper, real-rational 
functions taking values in Pm. %H.r',"" shall denote the 
set of stable, proper, real-rational functions taking values in 
C p x m .  The notation {s E : B(s) = 0) will be used as 
shorthand for zeros of B(.)  on the positive real line. The set 
includes the point at,infinity if lim,,B(s) = 0. For matrices 
A,B,C,D of compatible dimensions, the expression 

will be used to denote the transfer function G(s) = C(s1 - 
A)-'B+D. Real-rational functions will be indicated by their 
dependency of a complex variable s (as in C(s),  K(s ) ) ,  
although the dependency of s will be suppressed in the 
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notation (as in G, K), where no misunderstanding should 
be possible. 

111. PROBLEM FORMULATION 

Consider a system of the form: 

x = AX + BU 
Yl = ClX 
YZ = c2x 

Y p  = cl+ 

(1) 

wherexE R", U E  %'",yiE K ,  i =  1 ..., p and A , B ,  C;,i= 
1 . . , , p  are matrices of compatible dimensions. Each of the 
p measurements yi, i = 1,. . . , p ,  is the output of a sensor, 
which can potentially fail. 

In this paper, we will determine whether it is possible 
to design a feedback compensator that is guaranteed to 
stabilize a given system, in case any sensor could potentially 
fail. To be more precise, we are looking for a dynamic 
compensator U = K(s)y ,  K E q T m x p ,  with the property, that 
each of the following feedback laws: 

U = K(s )  

YP 

are internally stahilizing, i.e. that both the nominal system 
as well as each of the systems resulting from one of the 
sensors failing are all stabilized by K(s ) .  

It is obvious, that the answer to this question immediately 
provides the answer to the corresponding dual question: i.e. 
whether is is possible to design a compensator, that works 
in the nominal situation, but also if any of the actuators 
would fail. 

IV. PRELIMINARIES 

We remind the reader - see e.g. [13, Theorem 5.9, 
Page 1271 - that a doubly coprime factorization of a strictly 
proper plant and a stabilizing compensator 

G(s) = N ( s ) M ' ( s )  = k1(s)R(s)  
K ( s )  = U(s)V- ' ( s )  = V- ' ( s )a ( s )  

where 

G E ?~ .Ls !P~~ '" ,  

K E K @ ' " ~ ,  

can be found from 
formulae: 

(; ;) 

an observer based controller by the 

= (W) 
= (W) (3) 

where A , B , C  are parameters for a (minimal) state space 
representation for C(s), i.e. matrices of smallest, compatible 
dimensions such that 

F is an arbitrary stabilizing state feedback gain and L is an 
arbitrary stabilizing observer gain, i.e. F and L are matrices 
of compatible dimensions such that both A +BF and A+LC 
have characteristic polynomials which are Hurwitz. 

The eight matrices defined by (3) satisfy the double 
Bezout identity: 

( -N 9 -?)(" A4 N V  U )  

We also remind the reader, that a unit is an element of a 
ring, which has an inverse in that ring. In particular, a unit 
in the ring of stable proper rational functions, is simply a 
stable proper function with a stable proper inverse. 

We will need the following result (see [14, Theorem 5.2, 
Page 1061 or [IZ, Corollary 6,  Page 1181) on the strong 
stabilization problem, i.e. the problem of finding a stahle 
stabilizing compensator: 

Lemma I :  Let A ( $ ) ,  B(s)  be stable proper transfer func- 
tions. Then there exists a stable proper transfer function 
Q(s) such that the function 

4 s )  +B(s)Q(s) 

is a unit in the ring of stable proper rational functions, if 
and only if 

has constant sign for all zip E {x E x+- : B(s) = 0) .  
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V. MAIN RESULTS 

In this section we shall present ow main results which 
state that for systems with several outputs, it is always 
possible to find a compensator, that both stabilizes the 
nominal situation, as well as the situation where any of 
the sensors fails. In a similar fashion, it is shown, that 
it is always possible to design a fault tolerant feedback 
compensator for a system with several actuators. The only 
precondition to these results, is in the first case that all 
unstable modes for the system are observable by each sensor 
and in the second (dual) case, that all modes are controllable 
by each actuator. 

Theorem I: Consider a system given by a state space 
model of the form (1). Assume, that the pair (A$) is 
stabilizable, and that each of the pairs (C;,A) , i = 1,. . . ,p, 
is detectable. Then, there exist8 a dynamic compensator 
K(s )  such that each of the p +  1 control laws (2) intemally 
stabilizes the system (1). 

The proof will be constructive, and we shall give some 
comments on practical computations in the sequel of the 
proof. 

Proof: First, let us note that it suffices to prove the 
result in the case where m = 1 and p = 2. To see that m = 1 
can be assumed without loss of generality, one can just 
consider the system 

x = Ax + & 
Yl = CIX 
y2 = czx (4) 

Y ,  = cpx 
where g= Bv, Y Exmxl, FE 9, and v is any vector such 
that the pair (A,B) is also stabilizahle. This is always 
possige, see e.g. [IS, Corollary 1.1, Page 431. Thus, if 
U= K(s)y is a fault tolerant feedback law for (4), then 
U = K(s).y is a fault tolerant feedback law for ( I )  with 
K(s)  = vK(s). 

Next, if 
K(s)  = ( KZ(4 ) ( 5 )  

is a fault tolerant feedback compensator for this system: 

i = Ax + Bu 
Yl = ClX (6) 
YZ = c2x 

then 

K ( s ) =  ( KI(S) K2(s) 0 ... 0 ) (7) 

is a fault tolerant feedback compensator for the system (1). 
Indeed, in the nominal situation or if one of the sensors 
corresponding to y , ,  i = 3 , .  . . , p  fails, the control signal 
generated by (7) will he the same as the control signal 
generated by ( 5 )  in the nominal situation. If y , ,  i = 1,2 fails, 
(7) will still generate the same control signal as ( 5 )  which is 
known to stabilize the shared dynamics of the two systems. 

Thus, without loss of generality, we will assume that the 
system in consideration has the form 

x = Ax + Bu 
Yl = CIX (8) 
YZ = CZX 

where B is a single column matrix, C;, i = 1,2 are single 
row matrices, u,yj E 9, i = 1,2. Thus, it will be assumed 
that the transfer functions from U to each of the outputs are 
scalar. 

Define C = ( E; ) and let &(s) be an intemally 
stabilizing compensator for the system (S), which has the 
transfer function G(s) = C(sl-A)- 'B. Introduce a doubly 
coprime factorization of G(s) and &(s), i.e. stable proper 
functions M, N ,  Po, 00: 

fG(s) = Vi1(s)00(s) = Vi" ( OO,I(S) 0o,z(s) ) 
satisfying the Bezout identity 

P ~ W - $ N = P ~ M - ~ ~ , ~ N I - O ~ , ~ N ~ =  1 (9) 

This can always be done - explicit formulae are given by (3). 

( Po 00,i 00,z ) by ( P 01 0 z  ) 
Next, we note that replacing in (9) the mplet 

where 

P V O - Q ~ N I  -Q3Nz 

01 = %I -QiNz-QzM 
0 z  = $,z+QINI -Q3M 

also provides a solution to (9), as this simple calculation 
shows: 

PW- OlNl- 02N2 

= ( ~ o - Q z N I - Q ~ N ~ ) M - ( ~ o , I - Q I N ~ - Q ~ M ) N I  
- ( ~ o , z + Q I N I - Q ~ M ) N z  

= PoM-OO,INI -Oo,zNz 
= I  

Consequently, any transfer function of the form: 

= (vo - QzN -e&-' 
P-' (  01 0 2  ) 

x ( UO,I - QINZ - QzM OO,Z + QINI  - Q3M ) 
(10) 

where Q I ,  Q2, Q3 are all stable proper rational functions, is 
also a stabilizing compensator. 

In the sequel, we shall demonstrate, that Ql, Q2, Q3 can 
he chosen such that P-l ( 01 0 2  ) stabilizes both the 
nominal and the faulty systems. 

If the sensor corresponding to one of the outputs fails, 
the controller P-' ( 01 02 ) has to stabilize a system of 
the form: 
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which means that stability is obtained if and only if the 
compensator (IO) satisfies the two equations: 

(Vo - QZNI - Q3NZ) M 

- (  O O , I - Q I N ~ - Q Z M  U O , Z + Q I N I - Q ~ M )  

= V O M - Q ~ N I M -  QsNzM 
f3 

- OO,INI + QINZNI + Q Z ~ I  
= VoM- 00,iNi + QlNzNi - QsN2M= U I  (11) 

and 

(Vo - QZNI - Q3NZ) M 

- (  UO,I -QINZ-QZM Oo0,2+QlN]-Q3M) (9 
= VoM- 00,zNz - QlNlNz - QzNiM= u2 (12) 

where U I ,  uz are units in the ring of stable proper rational 
fimctions. 

Thus, the existence of a fault tolerant controller has 
now been shown to be inferred from the existence of 
stable proper rational functions Ql, Q2, Q3, such that U I ,  u2 
become units. We will prove this existence by first choos- 
ing Ql appropriately. Subsequently, (11) and (12) will be 
considered as equations for Q3 and Qz which are no longer 
coupled, and show that each has an admissible solution. 

To that end, first note that it is possible to determine a 
stable proper fimction QI , such that: 

for all positive real zeros of M,  zip E { z  E %+- : M(z) = O } ,  
since NI (zip)N2(zip) can not be zero for M(zip) = 0 due to 
coprimeness of M and NI and of M and Nz. To determine 
Ql satisfying (13) in practice can be done by a standard 
rational interpolation. 

Now, for a fixed Q I ,  (11) can be recognized as a 
strong stabilization problem in the variable Q3. It is known 
from Lemma 1 that such Q3 exists if and only if 

~OM-OOJNI +Qd"NiI s=rip 

has constant sign for every value of 

zip E { z  E R+- : M(r) = 0 or Nz(z) = 0) 

For M(zip) = 0 we obtain: 

= -$,I(~)NI(~)+QI(s)Nz(s)NI(s)I = - 1 (14) 
'=zip 2 

where (9) has been applied. This proves the existence of 
an admissible function Q3. To determine Q3 in practice, 
one approach is first to find U I  that interpolates the con- 
straints (14) and (15), and subsequently to determine Q3 
as a solution to (I  I). If U I  in addition is chosen to interpolate 
all constraints arising from zeros of M and N2 in the 
right half plane (not just the positive half line), Q3 can be 
computed by: 

The proof of existence of an admissible QZ is completely 
analogous to the proof of existence of Q3. The interpolation 
constraints for (12) corresponding to M(zip) = 0 amounts to: 

Fo(s)M(s) -$,z(s)Nz(s) - Qi(~)Ni(s )Nzb)I  s=qp 

(17) 
1 1  - - I - - = -  
2 2  

where (9) and (13) has been exploited. For Nl(zi,) = 0 we 
obtain the constraints: 

= %(s)M(s) - 0a,z(s)Nz(s) - QI  b)Ni  (sP"(s)l 
*=zip 

= 1 (18) 

from (9). QZ can now be found as a solution to (12), 
and the resulting u2 will interpolate the conditions (17) 
and (18). Again, Qz might be computed by first linding 
uz interpolating all constraints arising from zeros of M and 
NI in the right half plane (not just (17) and (IS)), and then 
computing Qz as: 

Thus, one possible fault tolerant compensator is: 

K =  ( ~ O - Q Z N I - Q J N ~ ) - I  
x ( OO,I-QINZ-QZM $ , z+Qd"-Q3M)  

(20) 
which stabilizes the system given by (8) in the nominal 
case, as well as in the case, where one of the two sensors 
fail. 

We again stress that every step in the proof is construc- 
tive. A worked example based on a procedure based on this 
proof can be found in [16]. 

A corresponding result for actuator failures follows triv- 
ially from Theorem 1 by duality: 

Theorem 2: Consider a system given by a state space 
model of the form: 

(21) 
x = Ax + Blul + .__  + Bmum 
y = cx 
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where x E Xn, ut E 4,  i = 1 ..., m, y E q p  and A,Bi,i= 
1 . . . ,m, C are matrices of compatible dimensions. Assume, 
that each of the pairs ( A $ ; ) ,  i = I , .  . . ,m, is stabilizable 
and that the pair (C,A) is detectable. Then, there exists a 
dynamic compensator K(s)  such that the nominal control 
law: 

/ J 
as well as each of the m control laws 

and 
v 2 ( 1 + E ) + Y ( I + E ) =  1 

From this last equation, we infer that either vz( 1 +E) 5 
or v3(l +E) 5 f .  Assume without loss of generality that 
y (1 +E) 5 f , Then y is a unit such that 

1 
2 y ( I ) = l ,  Y : = Y ( ~ + E ) < - ,  and y(-)=l 

The constraint at infinity, means that we can assume vz to 
be of the form: 

(24) 

(25) 

s"+als'-l +. . .+a ,  
"N = s" +Pis"-' + . . . + p. 

U =  i') , 
Ulfl 

for some n, which leads to the conditions: 
Um 1 + al + . . .+a, = 1 + P I  + . . . + bn 
... 1 U =  

( 1  +E)" + (1 +€)"-lal + . . . + a ,  
= y(1 +E)" +y(l +E)"-IPI + . . . + f i n  (26) intemally stabilizes the system (21). 

Proof: Follows by transposing the system and the 
compensator. 

It is interesting to note that it might be necessary to resort 
to arbitrarily high controller orders even for a system of low 
order. As an example, consider for E > 0 

Subtracting (25) from (26) gives: 

( I+€)" -  1 + ((1 +E)"-' - 1)al 
+ . . . + (( 1 +E) - 1) a"-l 

+ . . .,+ (7- 1)P" 

(27) 
= (y(l +E)"- I ) +  (?(I +E)"- !  - 1 ) P l  

{*-( 1 + E ) )  (*+I ) 

with the following coprime factorization 
We remind the reader, that a necessary condition for (24) 
to be a unit is that ai > 0, P i  > 0, i = I , .  . . ,n. Thus, all the 
terms on the left hand side of (27) are positive. This means, 
however, that (27) can only be true if 

1 
Y 

G,(s) = N(s)M(s)-' = 

(1 +E)" > - 2 2 for which the fault tolerant control problem is equivalent to 
finding K(s )  = P-' ( 01 0 2  ) such that 

or, equivalently 
p m  S+l - 0l& - 0 2 &  = U1 

p* S+l - OI& - 0 = U 3  

- .-( I+C) log2 
Y -  - 0 - 02& = uz (23) n >  -+- for E + O +  

s+ I log( 1 +E) 

From (23) we obtain: 
where U!, uz, u3 are all units in the ring of stable proper 
functions. 

Evaluating these equations at s = 1 at s = -, we notice 
P 4 t E )  02+ 

U2 S + l  S+l) - = V Z  U1 p*-01pl-023+ 

(s - (1 +E))(S+ 1) - (s - l)8-102 
( s - ( l + E ) ) ( S + I ) - ( s -  I)V-lO1 -(s- 1)v-102 

that S+I ' ( X f l )  (Jfl) 

u l ( l )  = uz(1) = u 3 ( 1 )  and U!(-) = u2(-) = u s ( - )  - - 
On the other hand, we also have 

Since the order of the left hand side of this equation tends 
to infinity as E tends to zero, clearly also the order either 
of 

Thus, the order of,the resulting controller can be required 
to be of arbitrarily high order even for this family of second 
order systems. 

UI (1 +E) = u2( 1 +E) + u3( 1 +E) 

Let us define the units vz = U Z / U I  and y = U J / U I .  Then we 
have: 

or of p-'oz has to tend to infinity 

~ ~ ( 1 )  = v 3 ( l )  = I ,  v 2 ( m )  = 1,3( - )  = 1 
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VI. CONCLUSIONS 
In this paper, we have proved the existence for any given 

system of a fault tolerant compensator, which stabilizes the 
system during its normal operating conditions, but also in 
the case that one of the sensors or actuators would fail. Only 
complete failures of sensors or actuators were considered, 
i.e. the case where the signals of the failing sensor/actuator 
become zero or at least uncorrelated with the expected 
signal. 

The proof given was constructive, and it was demon- 
strated for a simple example that carrying out the steps 
of the proofs can lead to a fault tolerant compensator. It 
should be stated, however, that the design process is not 
easy. Also, in practice, the issue of performance should be 
addressed, which can, unfortunately, not easily be done in 
the framework suggested here. 

It was also shown that the dynamical order of any 
fault tolerant compensator for some systems even of order 
two might have to be considerably large, due to intrinsic 
properties of the system. 

A subject of future research is to clarify whether the 
same results hold for systems in which several sensors and 
actuators (but not all of either kind) can fail simultaneously. 
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