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Abstract-In the process of achieving good performance of 
Compact Disc players it is important to handle surface defects 
as well as possible. The first prerequisite for handling these 
defects is to detect their beginnings and ends. Two servo loops 
are formed to keep the optical pick-up focused on, and radially 
tracked at the information track on the Compact Disc. The 
pick-up feeds the controllers with sensor signals, and some 
signals for defect detection. However, due to optical cross 
couplings detection based on these signals can at times give 
false or no detections. In this paper a method to estimate fault 
residuals is designed in such a way that the cross couplings 
are removed. This is done based on a model of the optical 
system, from the physical focus and radial distances to the four 
detector signals. Combining this model with a fault model, 
enable us to solve an inverse function to find the distances as 
it would have been if no faults had occurred. Two different 
approaches are pursued in this paper. Both are based on the 
Newton-Raphson method. Both methods solve the respective 
inverse problems. 

I. INTRODUCTION 
Even though Compact Discs (CD) have been on the mar- 

ket in more than two decades, there are still performance 
issues to improve. Many people has experienced that their 
CD player, have problems playing discs with scratches, 
finger prints etc. 

The Optical Pick-up Unit (OPU), used to read the data 
from the spiral shaped track, is controlled to be focused 
and radially tracked on the data track. The job of the two 
controllers is to keep the focus and radial distance equal 
zero. The focus and radial distances are illustrated in Fig. 
1. In the OPU some optics are used for generating four 
detector signals, (two relating to each loop), the differences 
of these pairs are used to approximate focus and radial 
distances, the sum of these pairs give information of the 
amount of the reflected energy received at the detectors in 
the OPU. The actuators in both loops are linear electro- 
magnetic actuators, see [I] and [2]. Sometimes CD players 
have problems playing disc with surface defects. The reason 
is that the sensor is not reliable during a defect. A way 
to handle a defect is first to detect the defect as fast and 
reliable as possible and then detected, adapt the controller 
to handle the detected defect. 

In many commercial CD players the sum signals are 
used for detection, since a defect typically will cause these 
sum signals to decrease remarkable. The sum signals are in 

n 

Fig. I. The focus emor e~ is the distance from the focus point of the l-er 
beam to the reflection layer ofthe disc, the radial error is the distance fmm 
the centre of the laser beam to the centre of the track. The OPU emits the 
laser beam towards the disc surface and computes indirect measurements 
of er and e. based on the received reflected light. In addition the OPU 
generates hvo residuals which can be used to detect surface defeca as 
scratches. 

principle not correlated with disturbances in the system, see 
[3], [4] and [5 ] .  But due to the optical cross couplings in the 
system, this is not entirely true in practice. A radial distance 
changes the focus sum, and a focus distance changes the 
radial sum. In [6] a physical model of the optical system 
as with focus and radial distance as inputs, (et and e,), was 
developed. This model also includes cross couplings from 
focus distance to radial detector signals, and from radial 
distance to focus detector signals. The output set of the 
model is a set in which the detector signals will be in the 
normal situation, where only disturbances occur. 

Practical experiences have shown that it is preferable 
to distinguish between disturbances which the controller 
shall reject and faults which the controller shall not react 
to. Disturbances are phenomena like mechanical shocks, 
eccentricity of the disc etc. Faults are phenomena like 
scratches and finger prints on the disc surface, see [4]. The 
values of the four detector signals are caused by the two 
distances and the fault. Le. it makes good sense to describe 
the fault by two parameters, i.e. focus and radial deviations 
of the sampled detector values from the model caused by 
the defect. These parameters are residuals which are well 
suited for the detection of the defects. 

Unfortunately it is not a simple job to find these distances 
and residuals, since the only known information is the 

0-7803-8335-41041517.00 02004 AACC 1042 



model and the sampled detector values. The model maps 
from (er,e,) E R2 to a 2 dimensional subset of the four 
detector signals in R4, The output set of the model is the set 
of values which the detector signal can be in as a response 
to er and e,. This means that the output set of the model 
outputs is a surface in R4 with co-dimension 2. For the 
control purposes it is much more interesting to solve the 
inverse problem of this model since it would be helpful for 
control and fault detection and accommodation purposes to 
calculate er and e, from the detector signals, and also use 
er and e, to compute the fault parameters. Unfortunately, 
where is no global solution of inverse of the mapping given 
by model. The estimated distances and parameters found in 
this paper are in [7] and [8] used for detection of defects, 
and these show a clear potential of the residuals. 

By using redundancy of detector signals and a simple 
model of the possible faults in this paper, a local solution 
based on Newton-Raphson's method is described. This 
local solution of the inverse problem can also he used for 
solving inverse problems for other applications like this. 
This description is followed by a proposal of two different 
algorithms to locally solve the given inverse problems given 
by the fault model. The first algorithm is based on a fault 
model which is an orthogonal projection on the model's 
output set. The second one is based on a fault model 
which is a scaling projection on the same output set. The 
algorithms are subsequently tested by simulations, and the 
results of these simulations are that the algorithm based 
on the scaling projection is clearly the best handling the 
inverse problem with a type of faults like the ones in the 
CD player case. 

11. THE DISTURBANCE SET 

The nominal controllers are designed to handle changes 
in the sensor signals due to the disturbances inside the 
Disturbances set. Surface defects such as scratches and 
finger print can be viewed as deviations from this set. The 
disturbance set in R4, can be defined in the following way: 

1 DEFINITION (THE DISTURBANCE SET) The disturbance 
set D E R4 is defined as the set in which any sample s, 
in R4 of the deiector signals, will be if only disturbances 
OCCUI: 

'D can be modelled by some functions mapping from er 
and e, to the four detector signals 

This model is found in [6] .  These functions are based on 
a first principle model of the optical system. Each of the 
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Fig. 2. The WO factorising functions of fl(.), hi(er) in the upper pad, 
and gl(ef) in the lower pa*. 

four function fi(q,e,), i E {1,2,3,4}, can be simplified 
to the following structure. 

f d e a e , )  = hder) .gi(eJ, (2) 

hi(ef) E R and gi(e,) E R. D1 and DZ are symmetric and 
related to the focus loop and SI and 5'2 are symmetric as 
well and related to the radial loop. Due to the symmetry 
not all the functions are plotted. hl(.) and gl(.) are plotted 
in Fig. 2, and h3(.)  and g3(.) are plotted in Fig. 3. From 
these functions it is clear that the optical model does not 
have a global inverse. Instead does the scope is to find a 
method to compute the local inverse at given points based 
on a given fault model. 

The implementation of this model has a drawback. The 
functions are not differentiable at all points, even though 
the real system is. In the description of the distance 
function it can be seen that differentiability is an important 
requirement to the disturbance set model, see Section 111. 

As a consequence, a differentiable model is needed. This, 
not at all point differentiable, model is instead approx- 
imated by splines, land due to the properties of splines, 
this splined-model is differentiable at all points. The spline 
approximations are done by using cubic splines. 

This disturbance set is pmicularly interesting in the case 
of fault detections, since faults move the detector signals 
outside this set, see [SI. A measure of the deviation from the 
model to a given sample, s, caused by the fault would be a 
signal well suited for detection of a fault. An example of D1 
and Dz where s,, due to a defect is outside D, represented 
by f ,  is illustrated in Fig. 4. The controllers controlling 
focus and radial distances are only hying to reject the 
movement of the detector signals inside the disturbance set. 
So even though that a sample's deviation from D is quite 
interesting in case of detecting a fault, it does not explain 
everything a fault causes. A fault does cause movements of 
the detector signals which can be assumed as being inside 
2, but is not, [9]. It is as a consequence quite interesting 
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Fig. 3. The two factorising functions of f3( . ) ,  ks(er)  in the upper part, 
and g3(ef) in the lower part. 
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Fig. 4. The measured detector signal, am. is due to a faull outside the 
output set of the optical model. f(.),  this is illustrated with the detector 
signals DI and Dz, which are the two focus detectors measured in [VI. 

to know an estimate of this fault caused movem t .nside 
D. This means it is interesting to calculate x = as it 
would have been if no faults had occurred. It is o equal 
interest to compute some parameters describing the fault. 
All these can be found by solving the inverse problem. 
In the following two methods are described to solve the 
inverse problems. 

tj 

111. TWO METHODS FOR SOLVING THE INVERSE 
PROBLEM 

The solution of the inverse problem can be found based 
on the use of the redundancy of the detector signals. These 
signals can be modelled as: 

(3) 

Where g(. . . , ff ,  f,) is a model of the fault. This means by 
solving the inverse problem for finding er and q, gives the 
fault parameters ff and fc as well. 

REMARK 1 In the given application there are some addi- 
tional requirements to the solution of the inverse problem. 
Due to low pass filtering nature of the OPU the following 
limits are relevant: Ief[n] - er[n + 111 < yf and le&] - 
e,[n t 11 I < yr. where n is any sample, and yr and yr are 

sm = d f ( e t ,  4, fr, A). 

Dz 

Fig. 5. Illustration of the principles of the orthogonal projection method. 
The illustration shows an example of one iteration in RZ, D1 end D2 
the two focus detecton measured in [VI The subscript i represents the 
iteration number. f(xi) is the starting point, Vf(x,) is the gradient at 
the s m i n g  point, n(x,) is the normal vector to the gradient, sm is the 
sampled detector signals, f(xi+i) is the function value of iteration i+ 1, 
Cdif is the error at iteration i + 1. 

the maximum variations in er and e,. This luckily solves 
the non-uniqueness problem and makes it possible to find 
the local solution to the inverse problem. 

Based on the standard requirements to the CD player 
servos, see [Z], the maximum deviation of focus and radial 
positions from sample to sample can be calculated to: "(r = 
yr 3 0.014pm. 

In the following, descriptions are given of the two dif- 
ferent approaches to solve the inverse problem and thereby 
find the right candidate point, and use this to compute the 
fault parameters. 

The first approach is to model the faults as being 
orthogonal to D, meaning that a normal distance function 
can be used, this approach has its strong side in solving 
the inverse problem in case of no defects. The second 
approach is based on a fault model, which changes the 
sensor signals in a direction towards the origin, which is 
stronger in solving the inverse problem if a defect occurs. 

A. The orthogonal projection method 

The subject is to find the point, f(x) in D,where x = 
[el e,]T.  The following is known, if n(x) is defined as 
the normal vector to f(x): 

s, = k . n(x) + f(x), k E R. (4) 
Since f(.) is only local invertible, there are a number of 
points in D for which (4) is true. Due to Remark 1, the 
value of xln] would be close to the value of x[n - 11, this 
means that if an iterative algorithm is used for finding .In], 
x[n - 11 can be used as a starting value of the algorithm. 
In the following an algorithm, based on Newton-Raphson's 
method, is described. One iteration of the algorithm used 
on a problem in RZ is illustrated in Fig. 5 .  

1) The algorithm: In the following the iteration numbers 
are indicated in variable subscripts with i, meaning the ith 
iteration. The most important part of this algorithm is the 
projection of the vector s - f(2;) on the tangent plane at 



the point (f;), where f is estimated value of x. The tangent 
plane is defined as: 

Y(Xi+l) = f(Xi) +Vf(Xi) ' (%+I -xi). (5)  

Now find an orthonormal basis of the gradient 

U = orth(Vf(xi)). (6) 

Use this to form a transformation matrix P 

P =u.u*. (7) 

This means 

Y ~ + I  = f(xi) + P ' (S - f(xi)), ( 8 )  
(9) P ' ( s  - f (Xi))  =U[, 

where 

6 =U' ' ( s  - f(x1)). (10) 

6 is the Ay in U coordinates. This gives, the iteration 
increment Ax as 

AZ = VC-'U* (S - f(xi)), (11) 
Vf(Xi) = ucv+ (12) 

= U  [C 0]*. (13) 

(14) 

Where 

U = U(l : 2,:). 

These equations result in 

Xi+l = xi + V'C-'u' , ( s  - f(xe)) =+ (15) 
(16) Xi+] = x; + Vf(Xi)+ ' (s - f(Xi)). 

The Vf(xz denotes the pseudo inverse of Vf(xi. The 
algorithm for estimating f is the following: 

Find the gradient, V ( i J  to the point ( i , , f ( i i ) ) .  
Project s to this tangent plane, from this projection 
&+I can be found. %"+I = f,+Vf(X;)+.(s-f(2;)). 

t.' 

D2 
Fig. 6. Illustration ofthe principles ofthe scaling projection methad. The 
Illusuation shows an example in Rz, DI and Dz the two focus detectors 
measured in [VI. f(x;) is the starting point for the iteration, Vf(x;) is 
the gradient at the starting point, sm, p .  B is vector through origin and 
sm. Vf(x;) . Ax is the crossing between the gradient and the vector 
through sm, this CM be used to find Ax and *,+I = xi + Ax, and 
f(xi+l) is the new function value. The algorithm stops with iterations 
then norm(f(xi+l) - 0. s) C L, where e is the stop parameter. 

B. The scaling projection method 
The orthogonal ,projection method is well suited for 

solving the inverse problem in cases where the detector 
signals are inside D, or the faults are orthogonal to D. The 
orthogonal distance function is not well suited for finding 
the right distance, since real faults for a CD player are 
not modelled well ,as orthogonal deviations. The study of 
the' two focus detector signals of a compact disc surface 
defects presented in [IO] indicates that a scaling model of 
the defectslfaults is a much better model. This model can 
also be argued based on some physical arguments. Given a 
sample of detector signals in D, f(xi+l). The defect can be 
modelled by a decrease of the received energy by a factor 
0 < k < 1 at all four detectors. This means that the new 
defective sample, s,  is: 

s m  FZ P ' f(xi+l). (17) 

Thus the point S, will be on the line going through 0 to 
f(x;+l). The general structure of the algorithm to calculate 
scaling distance function is the same as for the orthogonal 
distance function, and is also based on the fact that focus 
and radial distances cannot change much from sample to 
sample. Only two of the steps in the algorithm are changed. 
These are: the step calculating xi+l and the step containing 
the stop criteria. 

(18) f(x;) + Vf ' Axi+l = p .  s, =+ 
Compute a normal vector n(x) to the Vf . AX;+] - sm z -f(Xi) =+ (19) 
point(fi+l, f ( f i+ l ) ) .  

Dl - Dl [Vf -s,] , [""d"] Z -f(xa) =+ (20) 

compute: ff = [:I = ilp. SI -.SI - "11 , [a;;,,] = - ([Vf -Sm])+'f(xi). 

(21) 
The new stop criteria is the derivative of the model error: 

s2 - s2 
If lf(x) - S I  < c stop, else go to 1.  c is a small real 
constant. 

rt and rr are residuals, since they are 0 in case of no faults 
and increase as the fault develops. 112 ' (f(x) - P 's,)' (22) 
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p is not a residual since it is equal 1 in case of no faults 
and goes towards 0 as the fault develops, instead a related 
residual, a, is defined as: 

(23) 
1 

a = l - - .  

Previously an algorithm, based on the scaling projection 
and Newton-Raphson's method, is described. One iteration 
of algorithm used on a problem in R2 is illustrated in Fig. 
6. 

P 

1) The algorithm: 
1) Find the gradient, V(%j) to the point (%j,f(%,)). 
2) Compute: p;"] = E] + ([Vf -s,])' ' s,. 

3) ompute: y = lis, - f(x,+l)ll, ~f and T,. 

This aleorithm has in addition two outouts: Y and a. 
and they might be useful for detection and classification of 
faults. 

IV. SIMULATION 
In this section the two algorithms' abilities to solve 

the described inverse problem are tested by a number of 
different simulations. The used input signals (er and e,) to 
this simulation are two sine signals with a small difference 
in the frequency so that the two input signals are not 
fully correlated. The frequency and amplitude of these sine 
signals are chosen in a way that the maximum variance 
value from one sample to another is at least: 0.014pm, 
see Remark 1. The orthogonal projection method is tested 
first. Starting with a simulation without any faults, see 
Fig. 7. The signal with faults is constructed based on the 

Fig. 7. The four simulated detector signals without any faults. 

model in (17), where k[n] represents surface defects, and 
the signal is illustrated in Fig. 8. Using the fault model 
and the fault signal in Fig. 8, the simulation series of 
samples with surface defects are computed and illustrated 

o > D s Y J 4 ~ w 1 0 * 1 I I I ~ m  - S " ,  , , ' , I  1 

Fig. 8. 
in these simulations. 

The a[n] series, which models Ihe surface faults of a CD used 

Fig. 9. Simulation of the four detector signals with surface faults. 

in Fig. 9. The next step in the simulation is to apply the 
signal from Fig. 9 to the algorithm with the orthogonal 
projection. In Fig. 10 the series of f(%) are illustrated. 
From this figure it can he seen that this algorithm has a 
problem achieving good estimates of x at faulty samples. 
The reason for this is that the faults are not orthogonal 
to 'D. From this simulation it is clear that the orthogonal 
projection method is not appropriate for the type of faults 
described in this paper. One final simulation of this method 
is performed, where the fault is almost orthogonal to 'D. 
If the input time series of x is 0 in every element, the 
used fault model will be almost an orthogonal fault, but 
not completely. However, since these faults were not 
completely orthogonal they introduce a small distance in 
the solution, which is correlated with the faults. This means 
that even though the fault is almost orthogonal to 'D, it is 
not enough for the orthogonal projection based algorithm 
to give a good solution to the inverse problem. The next 
simulation is of the scaling projection algorithm. In this 
simulation the detector signals shown in Fig. 9 are fed to 
the algorithm. The results are shown in Figs. 11. From this 
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Fig. IO. IllusIralion of the four detector signals as they are if no fault 
occurs, and the ones estimated by the use of the orthogonal projection 
method. 

plot it is clear that the scaling projection method is well 
suited for solving this inverse problem with the given fault 
model. 

v .  CONCLUSION 

The simulations show that the orthogonal projection 
method is well suited for solving the given inverse problem 
if there are no faults or the faults are orthogonal to the set. 
However, in cases of other types of faults it is possible to 
achieve a better solution of the inverse problem by adjusting 
the algorithm to the given fault structure. In the CD player 
a,good model of the faults would be the one described in 
this paper, Solving the inverse problem with these types of 
faults, the described scaling projection algorithm achieves 
very good results as illustrated in the simulations. The 
solution of this inverse problem gives estimates of: focus 
and radial distances and the two pairs of fault parameters, 
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