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Fault Tolerant Controllers for Sampled-data Systems 

Henrik Niemann and Jakob Stoustrup 

Absnoct-A general compensator architecture for fault 
tolerant control (FTC) for sampled-data systems is proposed. 
The architecture is based on the YJBK parameterization of all 
stabilizing controllers, and uses the dual YJBK parameteriza- 
tion to quantify the performance of the fault tolerant system. 
The FTC architecture is based on a discrete-time nominal 
feedback controller and with the FTC part also in discrete- 
time. 

Further, a number of problems for the design of the 
controller reconfiguration part in the FTC architecture is 
considered. It is shown how these design problems can be 
transformed into standard design problems for feedback 
controllers. 

I. INTRODUCTION 

11. SYSTEM SETUP 

Consider the following generalized nominal 2 x 2 system, 

e @ )  = Ge&) + Geuu(f) 
(1) 

A t )  = G y 4 t )  + G y d t )  
z :  { 

where d E is a disturbance input vector, U E x"' the con- 
trol input signal vector, e € xq is the extemal output signal 
vector to be controlled, and y E xp is the measurement 
vector. 

Further, let the dynamical system in (1) be controlled by 
the following stabilizing sampled-data feedback controller 

U t  = K(Z)Yt (2) 

where the connections between the continuous-time signals 
u( t ) ,y ( t )  and the discrete-time signals uk,yk are given by In the past years, the area of fault tolerant control has 

received an increasine interest. The reason is the increasine 
I I 

use of more and more complex systems and control systems. 
The research in this area has been derived both for general 
dynamical systems, PI ,  P I ,  [121, [131, [ W ,  [W, Pel, POI, 
v41. 

The focus in this paper is on an architecture for fault 
tolerant controllers for sampled-data systems. Fault tol- 
erant controllers for sampled-data systems is important, 
because fault tolerant controllers can be quite complicated 
and therefore in general a digital implementation will be 
required. Further, digital control is standard today in many 
complicated control systems. It is therefore also natural to 
use digital implementation of the FTC part of feedback 
controller. 

The proposed FTC architecture is based on the Youla- 
Jabr-Bongiomo-Kucera (YrSK) parameterization of all sta- 
bilizing controllers. This architecture was first introduced in 
connection with continuous-time system, see e.g. [12], [13], 
[I51 for a description of the continuous-time architecture. 
The architechlre has a number of advantages that makes 
it very useful in connection with fault tolerant control. 
First of all, both the fault diagnosis part as well as the 
controller reconfiguration part are derived based on the 
same setup. Further, it is possible to change/modify the 
nominal controller without breaking the feedback loop. The 
modification is derived by using the parameterization in the 
architecture to add a modification signal into the nominal 
controller. This will make controller changes due to faults 
much more smooth. 

Yt = SY(f)  

u(r) = ?fUk 

where S is a sampler and ?f is a zero order hold. A block 
diagram of the system is shown in Figure I.  

Fig. 1. Standard sampled-data system sehlp. 

Let the system given in (1) include a number of paramet- 
ric/multiplicative faults, described hy the vector 8, Or = 
[el,. . . , ellr, All four transfer functions in (1) will be a 
function of the fault vector, i.e. 

= G & J ) d ( t )  + G,.(e)u(t) 

Y ( t )  = Gyd(e)d(f)  -t G y ( e ) u ( t )  
4: { 

It is in general possible to give a more explicit description 
of the system setup for systems with parameter faults by 
includine an extra invut and outvut vector. The above - 
system is then given by 
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z = G,w + GIdd + G,,u 

4: { e = G,,w + Gedd + G,,u (3) 
y =  G,w + Gydd+ Gpu 
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where the connection between the two extemal vectors w 
and z is given by 

= ez (4) 

This description is equivalent with the general description 
of system with model uncertainties, see e.g. [23]. 

For simplifying the following analysis, we have the 
following assumption. 

Assumption 11.1 It is assumed that each paramefric fault 
Bi occurs by itself; i.e. two parameter faults never occur 
simultaneousb. Moreove,: faults occur suficiently apart in 
rime so that at any given time at most one fault affects the 
measurement signal. 

The general result without this assumption can be obtained 
quite easily from the results stated in this paper. The above 
assumption is often satisfied and makes the presentation of 
our results more transparent without the need to cloud the 
presentation with more technically complex methods. 

111. THE YJBK PARAMETERIZATION 
The YIBK and the dual YJE3K parameterization are 

shortly introduced in this section. The YJBK parameter- 
ization was fmt derived by Youla et al. [21], 1221 and 
independently by Kucera [l 11. It has later been applied in 
numerous cases in connection with feedback control, see 
e.g. 111, 141, 1% 181, 1191, 1231. 

A .  The YJBK Parameterization 
Consider a generalized nominal 2 x 2 system given by (1) 

controlled by a sampled-data controller K(z)  given by (2). 
Funher, let the discrete-time transfer function from uk to yk 
be defined by 

Gw(z) = SGp(s)H 

i.e. the transfer function that the controller look into. A co- 
prime factorization of the system G&) and the controller 
K(z )  is given by: 

G,(z) = NM-' = M-'@, N,M,@,.@€ x9L 
(5) 

where the eight matrices in ( 5 )  must satisfy the double 
Bezout equation given by, see [23]: 

K(2)  = uv-1 = v-10, u,v,tr,vEx9L 

Based on the above coprime factorization of the system 
G&) and the controller K(z) ,  we can give a parameteriza- 
tion of all controllers that stabilize the system in terms of 
a stable parameter Q(s),  i.e. all stabilizing controllers are 
given by 1191: 

K(Q)  = WQ)v(Q)-' (7) 

where 

U(Q)=U+MQ,  V ( Q ) = V + N Q ,  Q E W L  

or by using a left factored form: 

K(Q)  = T(Q)- 'o(Q) (8)  

where 

o ( Q )  = o+Qfi, v ( Q )  = p+Qf l ,  Q E x9L 
Using the Bezout equation, the controller given either by 

(7) or by (8) can be realized as an LFT in the parameter Q, 

K(Q) = A(JK,Q) (9) 

where JK is given by 

The controller K(Q)  with the structure given by (9) can 
be implemented with a resulting the closed loop system as 
depicted in Figure 2, [19]. 

e z d 
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+ 
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Yk 

Fig. 2. 
system with a discrete time controller 

Controller shllchlre with parameterization far a sampled data 

The main observation which shall be exploited in the so- 
lution to the fault tolerant control problem, is the following 
simple expression for the transfer function from faults to 
the extemal output e terms of the parameter Q: 

e 

where (6) has been exploited. Note that it is not possible 
to describe the connection between extemal input d and 
extemal output e directly by a transfer function. 
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From (II) ,  it is clear that the closed loop operator 
between the extemal input d and the extemal output e is an 
affine operator in Q. Therefore, the closed loop stability will 
not be affected as long as Q is selected as a stable transfer 
function. Further, as a direct consequence of the closed loop 
operator being an affine function of Q, Q cannot be applied 
for stabilizing the nominal closed loop system. 

B. The Dual YJBK Parameterization 
In the same way, it is possible to derive a parameter- 

ization in terms of a stable parameter S of all systems 
that are stabilized by one controller, i.e. the dual YJBK 
parameterization. The parameterization is given by [19]: 

C,,,(S) =N(S)MS) - l  (12) 

where 

N ( S ) = N + V S ,  M ( S ) = M + U S ,  S E K X  

or by using a left factored form: 

C,,,(S) = &(s)-1A(s) (13) 

where 

$(S) =$+SP, &(S)=&+SO, S € K X  

An LFT representation of (12) or (13) is given by: 

= A ( J G J )  (14) 

where Jc is given by 

It has been shown in e.g. [19], that the dual YJBK 
parameter S transfer function can be calculated by using 
the primary YJBK parameterization. It tums out that S is 
given by: 

S = J F , ( J K ~ G ~ ( S ) )  (16) 

This simple relationship between the YJBK parame- 
terization and the dual YJBK parameter S can be used 
in connection with calculation/estimation of S. A general 
description of estimation of S will not be given in this paper, 
see instead [6], [19]. 

IV. FAULT TOLERANT CONTROLLER ARCHITECTURE 
FOR SAMPLED-DATA SYSTEMS 

In the sequel, an architecture for fault tolerant controllers 
for sampled-data systems will be proposed, based on the 
YJBK parameterization shown in the block diagram in 
Figure 2. There is a number of reasons for using the 
architecture from the YJBK parameterization io connection 
with FTC. First of all, a fault tolerant controller consists 
of two parts, a fault diagnosis part (the FDI part) and a 
controller reconfiguration part (the CR part). Both parts can 
be based on the YJBK parameterization. From Section III, 
we have that the Q parameter will be the CR part of the 
FTC controller. This means that the CR part of the feedback 

controller is a modification of the existing controller. Thus, 
the required change of controller when a fault appears in the 
system does not imply a complete shift to another controller, 
but only a modification of the existing controller by adding 
a correction signal in the nominal controller, the r signal 
in Figure 2. However, it should be pointed out that it is 
possible to modify the controller arbitrarily by designing 
the YJBK parameter Q, see e.g. [17], [19]. 

The other part in the general FTC architecture is the fault 
diagnosis part. This part can also be derived by using the 
same signals as used in connection with the YJBK param- 
eterization. Equivalent with the YJBK parameterization of 
all stabilizing controllers, a parameterization of all residual 
generators is given by, [9], [lo] 

r = QF& = QFD~ (fiy - &'U) (17) 

This is just the YJBK parameterization of all filters, i.e. 
there is no feedback. This means that it is possible to 
combine both fault diagnosis and controller reconfiguration 
in the same architecture without any problems. A block 
diagram for this combined FDI and CR architecture based 
on the YJBK parameterization for sampled-data systems is 
shown in Figure 3 for three potential multiplicative faults 
- the generalization to any number of faults should be 
obvious. 

The above controller architecture applied for FTC shown 
in Figures 2 and 3 has a fixed structure with respect to 
the number of measurement signals and control signals. 
This will not in general be the case in real applications. 
Here, faults in e.g. sensors can be handled by applying other 
sensors in the system, i.e. the measurement output from the 
system is changed. An equivalent approach applies to faults 
in connection with the actuators in the system. This type of 
system change has not directly been included in the system 
description given by (3). However, it is possible to include 
change of sensors and/or actuators in the FTC architecture 
given above. This aspect will not be considered here, see 
instead [I31 for a discussion of how to change the number 
of seosorslactuators in connection with the FTC architecture 
shown in Figure 3. 

v. DESIGN OF THE CONTROLLER RECONFIGURATION 
PART 

In the remaining part of this paper, design of the con- 
troller reconfiguration part, QCR in the FTC architecture 
will be considered. The design of the reconfiguration part 
can be derived with respect to closed loop stability only or 
with respect to both closed loop stability and performance 
of the faulty sampled-data system. Both these two design 
problems will be considered in the following. 

First, let us consider the closed-loop stability problem 
when the system is affected by multiplicative faults, i.e. 
if G,,, depends on some multiplicative faults. Let a YJBK 
parameterized controller K ( Q ~ R )  be applied, where the 
nominal controller K(0) =KO is designed for the nominal 
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Fig. 3. Fault tolerant scheme for smpleddata systems wiih three potential 
parameter faults. The residual signal is used both for isolation and for 
feedfonvard in the fault handling. 

system. The YJBK parameter is then applied for the con- 
troller reconfiguration in the faulty case, i.e. QCR(Z) needs to 
stabilize the sampled-data closed-loop system when a fault 
has appeared in the system. The stability of the sampled- 
data closed loop system requires stability of the nominal 
sampled-data closed-loop system and closed-loop stability 
of a certain loop where both QCR(Z) and the multiplicative 
faults 6 are included, [19]. The stability of the nominal 
sampled-data closed-loop system is satisfied by the design 
of the nominal feedback controller K(0) .  Using (16), we 
have that the two YJBK parameters (QCR,S(~))  will give 
a closed loop system that is decoupled from the nominal 
closed-loop system. It is therefore quite easy to show that 
the closed loop system is stable if and only if the nominal 
system is closed-loop stable and the closed-loop performed 
by the YJEIK parameters is stable, [19], given by 

~(QCR)(Z)  = ( l -Qc~S@))- ' (z)  (18) 

where S(6)(z) is the dual YJEIK parameter, depending on 

the multiplicative faults 6. 
To guarantee closed-loop stability, it is required that S is 

stable. Combining the YJBK parameterization with the dual 
YJBK parameterization, it is not a condition that QCR and S 
themselves need to be stable. QCR and S just need to satisfy 
that the closed-loop system given by (18) is stable, [19]. 
From the general explicit description of S given by (16), 
we have that S can be derived as the open loop transfer 
function between the input signal rk and the output signal 
Tk in Figure 3. Based on this, S(6)(2) then has the following 
form: 

S(6)(z) = A~(z)~G,(s)~(~-G,(s)~)-'G,(s)~C 

xM(z ) ( I -  0SGw(s)6(I - Gm(s)6)-I 

In connection with (19), it is important to note that the 
stability condition of S and/or of ~ ( Q c R )  in (18) for satis- 
fying that the faulty closed loop system is stable, is valid 
only if the faulty system is still detectable and stabilizable 
from the specified input signals U and output signals y .  This 
is a standard condition in connection with FTC systems. 
If the faulty system is not detectable and/or stabilizable, 
additional actuators and/or sensors need to be included in 
the system to satisfy these two conditions. It should be 
pointed out that the FTC setup considered in this paper, does 
not restrict the possibility to include more general controller 
architectures, where the number of actuators and/or sensors 
can be changedlmodified in connection with faults. This 
subject is discussed in [13]. 

It is important to note that if S is stable, we do not need 
a &a-parameter to stabilize the system. In this way, S can 
also be used for analyzing which faults are admissible and 
how large they can be before the closed-loop system will 
become unstable. 

Based on the general equation for S(6) given by (19), 
we have the following controller reconfiguration design 
problem. 

Problem 1 The controller reconfiguration design problem 
is defined as theproblem of designing, ifexistent, a feedback 
controller QcR(z), such that S(QcR)(z) given by 

S(QCR)(Z) = (1- QCR(Z)S@)(Z))-' 

is stable, where S(r)  is given by (19) 

This design problem is a pure discrete-time design prob- 
lem and stabilizing QCR(Z) controllers can be found by 
using standard discrete-time design methods. 

So far, only the stability part with respect to multiplicative 
faults has been treated. This is the most important part of 
the CR. However, it will also in some cases be possible to 
design QCR(Z) controller with respect to both closed-loop 
stability as well as closed-loop performance. Closing the 
loop of in & in (3) with the feedback controller K(QcR), 
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we get the following closed loop transfer operators between 
the inputs d, rk and the outputs e, f k :  

&Dso,O,K 

when a discrete-time nominal feedback controller is applied. 
Closing the loop from f k  to rk by QCR, the connection 
between the extemal input d and the extemal output e is 
then given by: 

e = h I E i ( e , s ) d =  5i&DSD,e,K,QcR)d (22) 

Note that the closed loop operator is a periodic system 
with the sampling time as the period. Based on this, we 
have the following H2 and 5% controller reconfiguration 
design problems. 

Problem 2 The optimal H2 controller reconfiguration 
design problem with performance recovery is defined as 
the pmblem of designing, if existent, a feedback contmller 
QCR. such that the closed loop operator GD,c/(e,s) is stable 
and the H2 norm of Ts~,~,(e,s) is minimized. 

Problem 3 For a given number y > 0, The suboptimal 
5% controller reconfiguration design problem with per- 

formance recovery is defined as the pmblem of designing, 
if existent, a feedback contmller QCR, such that the closed 
loop transferfirnction TsD,c/(e,s) is stable and the 5% norm 
of TsD,e/(9,s) is less than or equal to y, 

Standard sampled-data design methods cannot be applied 
directly in connection with Problems 2 and 3. The reason 
is that the discrete-time nominal feedback controller is 
mixed with the continuous-time system. However, it is still 
possible to find a (sub)optimal controller QCR by using the 
lifting technique followed by standard discrete-time design. 
The lifting needs only to be applied on the continuous-time 
part of the closed loop system. 

Let us consider a faulty closed loop system where a 
discrete-time nominal feedback controller is applied shown 
in Figure 4. 

Nom. discrete-time 
controller 

I I 

Fig. 4. 
controller and a discrete-time reconfiguration block. 

Controller architechre with a discrete-time nominal feedback 

Using the lifting on the open loop system between the 
inputs d, ut and the outputs e, yk, we get the following 
equivalent discrete-time system: 

ek = LG,d(e)L-'dk + LGau(L3)Huk 

= GL,ed(e)(z)dk -t GL,eu(e)(z)uk 
yk = SGyd(e)L-'dk + 5Gp(e)7fuk 

(23) 1 = GLyd(e)(z)dk + Gp(e)(z)uk 

ZL&) : 

where L is the lifting operator. It is important to note that 
the equivalent finite dimensional discrete-time system will 
depend on the subsequent controller design, see e.g. [7]. 
Introducing the lifted system in (23) in Figure 4, results 
in the equivalent discrete-time feedback system shown in 
Figure 5. 

The open loop discrete-time transfer functions from the 
inputs dk and rk to the outputs ek, f k ,  in Figure 5 are then 
given by: 

where TL,&), TL,&) and TL,id(Z) are functions of the 
lifted system given by (23). Let the closed loop transfer 
function from dk to ek be given by 

w e , z )  = x ( z L , e , K ( ~ ) ,  QCR) (25) 

The controller reconfiguration design problem is now 
transformed into a standard design problem. Design Prob- 
lems 2 and 3 are then given by: 

Problem 4 The optimal H2 controller reconfiguration 
design problem with performance recovery is defied as 
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Nom. discrete-time 
controller 

Fig. 5. Equivalent discrete-time controller archikchue. 

the problem of designing, if existent, a feedback conholler 
QcR(z), such that the closed loop operator TL,~~(O,Z) is 
stable and the H 2  norm of c , c i ( 1 3 , z )  is minimized, where 
c,&z) is given by (25). 

Problem 5 For a given number y > 0, The suboptimal 9L 
controller reconfguration design problem with perfor- 
mance recovery is defined as the problem of designing, if 
existent, afeedback controller QcR(z),  such ihat the closed 
loop transferfunciion c , c i ( O , z )  is stable and the 9L norm 
of T',ei(O,z) is less than or equal to y, where c , c i ( 1 3 , z )  is 
given by (2s). 

VI. CONCLUSION 
An architecture for fault tolerant controllers for sampled 

data systems has been considered in this paper. The ar- 
chitecture is based on the YJFiK parameterization, which 
facilitates both the inclusion of a fault diagnosis part as 
well as a controller reconfiguration part. 

A number of design problems for the controller recon- 
figuration part in the FTC architecture has been considered 
in this paper. It tums out that the controller design problem 
is a discrete-time design problem if stability of the faulty 
system is considered only. When performance is included 
in the design problem, the CR design problem is a sampled- 
data design problem. Here, lifting can be applied with 
advantage to transform the sampled-data design problem 
into an equivalent discrete-time design problem. 

The FTC architecture can been derived in two versions, 
one version based on a nominal discrete-time feedback 
controller as described in this paper and one version based 
on a nominal continuous-time feedback controller. The 
second version of the architecture allows it to be used 
directly on a continuous-time feedback systems without 
any modifications. This second architecture is considered 
in details in the journal version of this paper, 1161. 
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