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Abstract— Energy efficiency of refrigeration systems has
gradually been improved with the help of control schemes
utilizing the more flexible components; the efficiency is though
yet far from optimal. The flexibility initiates a higher degree
of freedom in choosing the operating set points while ob-
taining the required cooling capacity. This paper proposes an
approach which utilizes this newly gained degree of freedom
to drive the system towards the energy optimal set-point while
keeping up the cooling capacity. The focus of this paper is on
refrigeration system however the generality of the proposed
method thus applies to a broader range of process systems
where the lower level set-points (in the control hierarchy) can
be chosen within a degree of freedom allowing an optimization
of a steady state performance index.

I. NOMENCLATURE

cw Heat capacity water
[

J
kg·K

]
fq Heat loss coefficient compressor

h Enthalpy
[

J
kg

]
Kcp Power constant condenser pump

[
W ·s3

kg3

]
ṁre f Mass flow refrigerant

[
kg
s

]
ṁw Mass flow water

[
kg
s

]
N Rotational speed [rpm]
OD Opening Degree
P Pressure [bar]
Q̇e Cooling capacity [W]
SH Superheat [K]
SC Subcooling [K]
T Temperature [K]
UA Heat transfer coefficient

[
kJ
s·K

]
Ẇ Power consumption [W]
η Efficiency

Indices
C Compressor
CP Condenser pump
EP Evaporator pump
c Condenser
e Evaporator
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is Isentropic
ie Inlet evaporator
oe Outlet evaporator
ic Inlet condenser
oc Outlet condenser
wic Water inlet condenser
woc Water outlet condenser
wie Water inlet evapoator

II. INTRODUCTION

Many process systems operate for long periods in a
steady state mode, that is the control objective is more
or less just disturbance rejection. Furthermore they often
have the characteristic that the lower level set-points can be
chosen within some degree of freedom while still obtaining
the objective of the given process. Systems with this specific
enables the possibility for set-point optimization, where
the performance function to be optimized could be various
things such as production costs, energy consumption and
so forth. Many controllers for larger process systems has
thus in the top-layer implemented various kinds of advanced
optimization tools for predicting optimal set-points, for
instance in power plant controllers (Mølbak, 2003). For
cheaper and mass-produced plants such as refrigeration
systems, it is not realistic to make such an effort in each
controller, but the need for an intelligent way to choose
the set-points is thus still present. The requirement to an
optimization tool for these systems differs in the way that it
should be less complex and apply more generally to various
composition of the same class of system, being for instance
refrigeration systems.
The approach in this paper is to use the information in the
cost function gradient and a prediction of the steady state to
drive the a system to a less energy consuming steady state
operation. In the case of a convex energy-cost function, even
to the overall optimum. The proposed method is exemplified
by applying it to a refrigeration system in order to minimize
of the power consumption.

III. INDIRECT METHOD FOR ON-LINE STEADY STATE

OPTIMIZATION

Indirect methods or model based methods use a model
for the search of the steady state optimum. Since no models
in practice describes the process exact the hereby found
optimum will be an estimate of the real optimum. This
mismatch can be caused be several factors as pointed out
by (Svensson, 1994):

• errors in the model structure
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• uncertain parameters
• unmeasured disturbances influencing the process
• unknown state variables
• measurement noise

In the following it is assumed that all important dis-
turbances (v) and state variables (x) are available either
measured or estimated, that is they are at least observable.
The here proposed method can be divided into three layers
namely a steady state optimization, a steady state prediction
and a model parameter adaption.
The optimization layer tries to minimizes the steady state
performance function here given as the power consumption
(Ẇ ) in the system:

min
uss

Ẇ (xss,uss,vss), (1)

where xss is a vector containing the relevant states, uss
is the control signal and vss is the disturbance to the
system; the index ss denotes steady state. Assuming that
the states (x) are (controllable) controlled by a series of
distributed controllers, the optimization can be performed
just by manipulating the states instead of the control signals,
that is:

min
xss

Ẇ (xss,uss(xss),vss), (2)

where the control signal is generated by output feedback
(u = u(x)). Hereby the optimal set-points can be calculated
and passed on as reference to the distributed controllers.
This however calls for some computation even in the
unconstrained convex case, where the optimum is found
at:

dẆ (xss,uss(xss),vss)
dxss

∣∣∣∣
vss=const.

= 0, (3)

assuming vss is constant and x = x(u,v). However instead of
implementing an algorithm that calculates the optimal set-
point (x*

ss) directly, the cost function derivative ( dẆ
dxss

) can be
used as a control error in a outer loop, as depicted in Figure
1, that is of course if the optimization problem is strictly
convex or if the cost function declines globally towards the
global optimum. If this is not the case, there is no guarantees
that this method will converge to the global optimum, it
could be stuck in a saddle point or a local minima. However
if the optimization is started at a given steady state the
steady state performance will at least not be deteriorated
and in many cases it will be improved. This is because
it always follows the course of the gradient, which points
towards an evenly or less expensive place. Later it shall be
shown, that for a refrigeration system the minimization of
the energy consumption thus leads to a convex optimization
problem, this is also assumed to be the case for energy-cost
functions in many other applications.

Since a steady state cannot be measured continuously
it has to be estimated. This is done by assuming that the
present control signals (u) and disturbances (v) are constant
until a steady state is reached, that is u = uss and v = vss.
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+-
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Fig. 1. The optimizing control structure using the gradient approach.

Hereby an estimate of xss can be derived using a static
model of the system as shown in Figure 1.
The last layer adapts the model parameters (θ ) fitting the
real system. In this layer the dynamic of the system has
to be considered; otherwise the parameter adaption will be
inaccurate in the transients. However the only purpose of
the included dynamic in this layer is to filter out the dy-
namic behavior from the system in the parameter estimates.
Therefore the parameters which concerns the dynamic are
not really of interest. These parameters are therefore left out
of the adaption and rough guesses used instead. A setup like
this will be sufficient for estimating steady state slowly/not
varying parameters (θss).
The proposed method gives a simple approach to imple-
menting an energy optimizing control, without a complex
solver and only calls for little work in deriving a fairly
simple and general static model.

IV. ENERGY OPTIMIZING CONTROL

The potential savings using optimal set points for the
evaporator and the condenser pressure in the control of
refrigeration systems has been shown to be substantial.
Examples of that are given in (Jakobsen et al., 2001) and
(Larsen and Thybo, 2004).
The goal of an energy optimization is to keep the cooling
capacity (Q̇e) constant while lowering the overall power
consumption to a minimum at steady state. For a 1:1 refrig-
eration system, like shown in Figure 2, can the minimization
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be written as:

min
[NC ,NEF ,NCF ,OD]

(ẆC +ẆEF +ẆCF),

s.t.

Q̇e = Const,SH = Const

(4)

(the notations refers to Figure 2). Besides a constant cooling
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Fig. 2. System layout,a 1:1 refrigeration system, that is 1 compressor
and 1 evaporator.

capacity, it is assumed, as indicated in Eq. 4, that a
constant low superheat (SH) will ensure high efficiency of
the evaporator. These constrains (Q̇e = Const,SH = Const)
reduce the degree of freedom in the minimization till two,
which means that the evaporator and the condenser pressure
should be manipulated in order to find the minimal power
consumption.
An important point that is stated in (Larsen and Thybo,
2004) and (Jakobsen et al., 2001) is that the optimal
condenser pressure is practically independent of the current
evaporator pressure. This means that the evaporator and
condenser pressure can be optimized individually as two 1
degree of freedom optimization problems in order to reach
the global optimum (the maximal efficiency).
(Larsen et al., 2003) proposes a method which optimizes the
condenser pressure by solving one of the two 1 degree of
freedom optimization problems. That is assuming a constant
evaporator/suction pressure (Pe), controlled by an internal
loop along with a constant constant cooling capacity (Q̇e)
and superheat (SH). This results in following optimization
in accordance to Eq. (4):

min
[NC ,NEF ,NCF ,OD]

(ẆC +ẆEF +ẆCF),

s.t.

Q̇e = Const,SH = Const,Pe = Const

(5)

Figure 3 shows the power consumption of the individual
components in a 1:1 system (see Figure 4), for a constant
evaporation pressure, superheat and cooling capacity. It
can be seen that the energy-cost function here is strictly
convex. Finding the optimal condenser pressure results in
a equality constrained convex optimization problem. By
inserting the equality constrains the optimization problem,
one can rewrite it into an unconstrained one, where the

PC

W

WC

ΣΣΣΣWxΣΣΣΣWx

Power comsumption, PE = Const

WCPWCP

WEP

Fig. 3. Power consumption in the individual components (∑Ẇx = ẆC +
ẆCF +ẆEF )

optimum is found at the condenser pressure that satisfies

∂ẆC

∂PC
|Q̇e,Pe,SH=C +

∂ẆCF

∂PC
|Q̇e,Pe,SH=C= 0 (6)

The evaporator pressure (Pe) and cooling capacity (Q̇e) are
kept constant, thus ∂ẆEF

∂PC
= 0 ∀ PC. By calculating the power

gradient (Eq. 6) and driving it towards zero, controlling the
condenser pressure, the optimum can be found, see Figure
4. The approach described in the previous chapter is used
for this procedure.
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Fig. 4. The system layout, with the optimizing control structure.

V. STATIC MODEL

In order to be able to predict the steady state and estimate
the power gradients, a model is needed as argued above.
Since the potential energy savings can be obtained at steady
state it is only required that Eq. (4) is fulfilled at steady
state. The static model will be used for in the model
parameter adaption as well thus extended with a first order
filter to model some dynamic, however some of the dynamic
behavior will be considered as disturbance to the model
parameter estimates, this disturbance thus settles to zero
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at steady state. Consequently this means that even if the
dynamic is only roughly estimated the parameter estimates
will be correct at steady state.
The model is based on a 1:1 system like depicted in Figure
2. Instead of fans blowing air across the evaporator and
condenser, pumps circulate water through heat exchangers
which makes up the evaporator and condenser in the sys-
tem. The following 6 equations describes the steady state
condition for the system.

ẆC =
1

1− fq
· ṁre f (hic −hoe) (7)

ẆCP = KCP · (ṁw)3 (8)

Twoc = Tc +(Twic −Tc) · exp

(
− UA

ṁw · cw

)
(9)

Q̇e = ṁre f (hoe −hoc) (10)

0 = ṁre f (hic −hoc)− ṁwcw(Twoc −Twic) (11)

ηis =
ṁre f (his −hoe)

ẆC
(12)

The abbreviations can be found in the nomenclature.

Equation (7) describes the power consumption in the
compressor assuming a constant heat loss coeffi-
cient fq.

Equation (8) describes the power consumption in the
condenser pump.

Equation (9) can be derived assuming a lumped tem-
perature of the wall between the refrigerant and
the water and constant condensing temperature all
through the condenser.

Equation (10) describes the cooling capacity of the
evaporator.

Equation (11) describes the conservation of energy
across the condenser wall.

Equation (12) describes the isentropic efficiency of the
compressor.

In the equations above it is implied that the enthalpies (h)
are functions of the respective pressures and temperatures.
The equations are used as basis for the parameter and
power gradient estimation.

VI. LAYERS IN THE OPTIMIZATION STRUCTURE

Before the optimization structure can be implemented on
a refrigeration system the control input(u), states (x) and
disturbances (v) has to be identified. As described in chapter
IV, we wanted to minimize the energy consumption while
controlling the condenser pressure (Pc), therefor:

x = [Pc]

The control input is the mass flow of water through con-
denser pump,

u = [ṁw]

The remaining variables are considered as disturbances, that
is:

v = [ẆC,ẆCP,Pc,Tic,Twic,Twoc,mre f ,Pe]T

these are all considered to be available; measured or esti-
mated.
Cost Function evaluation
The cost function is here defined as the sum of the power
consumption in the compressor and the condenser pump.
Using Eq. (7), (8), (12) and inserting the equality constraint
Q̇e=constant given by Eq. (10) the cost function can be
written as:

ẆC +ẆCP =
1

ηis
· Q̇e

his −hoe

hoe −hoc
+KCP · (ṁw)3

When the steady state estimate on the condenser pressure
(xss = Pc,ss) is passed from the steady state estimation layer
can the cost function gradient be estimated by calculating
the cost of Pc,ss and Pc,ss +∆Pc,ss. In this case the gradient
could of course be derived analytically but this is not always
the case if more advanced models are used or if the model
is based on table lookup.
Steady state prediction
In this case the state that is of interest is the condenser
pressure Pc. From Eq. (7), (9), (10), (11) and (12) can the
steady state Pc,ss be found by iteration, assuming Q̇e, Pe and
ṁw is kept constant.
Model Parameter Estimation
The parameter estimation is carried out by using the MIT

rule (Åström and Wittenmark, 1989). Using this adaptive
parameter adjustment routine, the parameters can be tuned
by minimizing the error between the measurements and
the model, that is in accordance to the following equation
(Åström and Wittenmark, 1989) :

∂θ
∂ t

= −γe
∂e
∂θ

, (13)

where e denotes the model error and θ the parameter
estimate. The parameter γ determines the adaption rate.
Rewriting (7)-(12) following parameter dependent error can
be obtained:

e(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hic−hoe
ẆC

− 1− f̂q̂̇mre f
ẆCP
(ṁw)3 − K̂CP

ṁwcw ln( Tc−Twic
Tc−Twoc

)−ÛA

hoe −hoc −
̂̇Qê̇mre f

his−hoe
ẆC

− η̂iŝ̇mre f

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where θ = [ f̂q, K̂CP,ÛA, ̂̇Qe, η̂is]T , the remaining variables
and constants are assumed to be either known or measured.
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From (14) the derivative can be derived:

∂e
∂θ

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1̂̇mre f
0 0 0 0

0 −1 0 0 0
0 0 −1 0 0
0 0 0 − 1̂̇mre f

0

0 0 0 0 − 1̂̇mre f

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)

Using (14) and (15) the parameter estimator can be imple-
mented using the MIT rule given by (13) as shown in Figure
5.
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Fig. 5. Implementation of parameter estimator and condenser pressure
set point optimizer.

Using this approach a lowpass filtering of the measurements
through the integrator is obtained smoothing parameter
estimates and removing most of the dynamics. Furthermore
the parameters, which though are assumed constant, are
enabled to adapt to un-modelled changes in the system.
Optimizing Controller
The power gradient is fed to the condenser pressure
controller, which is implemented as a cascade controller,
showed in Figure 6. This control setup enables relatively fast
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+
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∆

��

PI

Fig. 6. The Condenser Pressure Control

dynamics in the inner loop, which helps keeping the system
on the right track by suppressing disturbances. The slow
integral action is moved to the outer loop, firstly because
only slow performance of the optimizing control is required
and secondly because the estimated value of power gradient
actually only holds true near steady state.

VII. INEQUALITY CONSTRAINS

Equality constrains on the states are in most cases fairly
simple to deal with, because they can be kept constant by a
local controller. As it can be seen from the example above
with the evaporator pressure (Pe). Inequalities on the steady
states are in this setup not either that hard to deal with,
because they are predicted before they are reached (in the
steady state prediction later, see Figure 1). This way they
can just be applied with a high cost in the cost function,
however it has to be done in a smooth way with a barrier
function such that the cost function remains differentiable.

VIII. RESULTS

A dynamic model of the refrigeration cycle like shown
in Figure 2 has been used in the simulation. The model
consists of a lumped parameter moving boundary model
of the evaporator (a plate heat exchanger), a lumped
parameter model of the condenser (a shell and tube
condenser) and static models of the expansion valve (a
step motor controlled valve) and the compressor (a scroll
compressor). A detailed description of the model can be
found in (Larsen and Holm, 2002).
In Figure 7 the power consumed by the compressor and
condenser pump using optimizing control is compared
with a constant condenser pressure control. The minimal
power consumption using the exact optimal set points is
also indicated. The system is started under the following
conditions:

Reference Pe Reference SH Twic Twie

4.22 [bar] 5 [K] 17 [oC] 27 [oC]

After 10000 sec, the temperature Twic is altered by a
step from 17 to 7 oC. Hereby as well the static as the
dynamic properties of the control can be examined. In
systems with air-cooled condensers (which are normally
placed outside), will the ambient temperature be comparable
with Twic. A change in Twic is therefore comparable with
changes in the ambient temperature.
When the process settles after start-up, deviates the power

consumption of the optimizing control 0.43% from the
optimal set point and after the step the deviation is 0.03%.
It is therefore possible within a relatively narrow margin
to operate the system in the optimal state (under the given
conditions). Furthermore it can be seen, that though the
model is static it does not have any impact on the dynamic
response of the power consumption, as previously stated.
The optimizing control has been compared to a constant
condenser pressure control strategy, which is a strategy
widely used. It can be seen that even though the constant
condenser pressure control has been started-up at an
optimal set-point, the potential energy saving, after the step
in Twie is around 14%. In the light of this the deviations
from the optimal set-point using the optimizing control are
insignificant.
In the figure below 8, there has been made a step change
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after 5000 sec in the inlet temperature to the evaporator
(Twie) from 27 oC to 22oC. Hereby the cooling capacity
(Q̇e) changes. This means that a new value has to be
estimated since it enters into the static model. As it can
be seen from the dynamic response this adaption of the
parameters (based on a static model) does not initiate
any foul behavior. This is because the filtering removes
much of the dynamics in the underlying distributed control
systems.

IX. CONCLUSION

In this paper a method has been presented for on-line
steady state optimization. The method provides a structure
for a simple steady state optimization scheme for a strictly
convex cost function or if the cost function declines globally
towards the global optimum. However the method is also

applicable where the above mentioned conditions are not
fulfilled, in these cases there is no guarantees that the set-
points converge to the global optimum. The application of
energy optimization in a refrigeration system illustrated a
case where the cost function is strictly convex and where
the method can be implemented with promising results.
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