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SUMMARY

A concept for implementation of multivariable controllers is presented in this paper. The concept is based
on the Youla–Jabr–Bongiorno–Kucera (YJBK) parameterization of all stabilizing controllers. Using this
scheme for implementation of multivariable controllers, it is shown how it is possible to smoothly switch
between multivariable controllers with guaranteed closed-loop stability. This includes also the case where
one or more controllers are unstable.
The concept for smooth on-line changes of multivariable controllers based on the YJBK architecture can

also handle the start-up and shut down of multivariable systems. Furthermore, the start-up of unstable
multivariable controllers can be handled as well. Finally, implementation of (unstable) controllers as a
stable Q parameter in a Q-parameterized controller can also be achieved. Copyright # 2004 John Wiley &
Sons, Ltd.

KEY WORDS: multivariable controllers; parameterization; switching; controller implementation; stabiliz-
ing controllers

1. MOTIVATION}AN EXAMPLE

Some aspects of stability in connection with implementation of controllers for multivariable
systems are considered in this paper. This includes both implementation of unstable controllers
as well as on-line change between a number of controllers.

Even for stable systems, most (post-) modern control techniques based on various
optimization techniques, such as H2; H1; L1=‘1 norm based or m optimization-based designs
tend to provide unstable controllers.

The industrial use of unstable controllers has been limited. This is unfortunate, considering
that for some plants, no stable controller will achieve optimality (in a mixed sensitivity sense).
Moreover, for some plants, no stable controller will robustly stabilize the system. Finally, for
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some unstable plants}violating the interlacing property}no stable controller will stabilize even
the nominal system.

Another aspect is the change of controllers, e.g. in the case where a simple controller is
applied in the start-up of the process, but which is later replaced by a more advanced controller.
This is normally performed by using a linear interpolation between the two controllers. As the
following small example show, there is in general no guarantee that a linear combination of two
stabilizing controllers will also stabilize the system.

Consider the following state space description of a generalized nominal 2� 2 system,

S :

’xx ¼ Axþ Bwwþ Buu

z ¼ CzxþDzwwþDzuu

y ¼ CyxþDywwþDyuu

8>><
>>: ð1Þ

where x 2 Rn is the state vector, w 2 Rr is a disturbance input vector, u 2 Rm the control
input signal vector, z 2 Rq is the external output signal vector to be controlled, and y 2 Rp

is the measurement vector. Let the nine matrices in the general system in (1) be
given by

A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu

0
B@

1
CA ¼

7:0 0 0

1:0 �7:0 �2:4495

0:0 2:4495 0

0
BB@

1
CCA

0:1

0:0

0:1

0
BB@

1
CCA

1:0

0:0

0:0

0
BB@

1
CCA

ð1:0 0:0 1:0Þ 0 1

ð1:0 � 5:0 253:1139Þ 1 0

0
BBBBBBBB@

1
CCCCCCCCA

i.e. n ¼ 3; r ¼ 1; m ¼ 1; q ¼ 1 and p ¼ 1:
The system is unstable, but can be stabilized by a P controller given by

u ¼ �DPy ð2Þ

The system is closed-loop stable for DP given by

DP 2 ½334;1Þ

Let us use DP ¼ 1000 as the gain for the P controller. This controller results in the following
stable closed-loop poles:

polescl;P ¼

�998:67

�0:6660 þ25:027i

�0:6660 �25:027i

0
BB@

1
CCA

Let the other controller be a dynamic controller given by

u ¼ K1ðsÞy ð3Þ
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where the controller K1ðsÞ has the following state-space realization:

SC :
’xxc ¼ Acxc þ Bcy

u ¼ Ccxc þDcy

(
ð4Þ

where xc 2 Rnc is the controller state vector. The controller has been designed as an observer-
based feedback controller, using an H2 design method on the full 2� 2 system described above.
The resulting controller K1 is given by

K1 :
Ac Bc

Cc Dc

� �
¼

�15:070 45:992 �2309:7

0:35357 �3:7679 �166:07

�0:13121 3:1056 �33:212

0
BB@

1
CCA

9:1283

0:64643

0:13121

0
BB@

1
CCA

ð�12:941 0:35054 0:85619Þ 0

0
BBBBB@

1
CCCCCA

Note that the state feedback gain F and the observer gain L for the controller is given as Cc and
�Bc; respectively.

The poles for the closed-loop system using K1 are given by

polescl;K1
¼

�25:1218

�0:9022

�7:7082þ 1:1005i

�7:7082� 1:1005i

�5:3047þ 1:1643i

�5:3047� 1:1643i

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Let a controller Ka be given as a linear combination of the P and K1 controllers, i.e.

Ka ¼ ð1� aÞDP þ aK1; a 2 ½0; 1� ð5Þ

This controller is used for on-line change between the two controllers. However, it turns out
that the controller Ka given by (5) is not stable for all a 2 ½0; 1�: The closed-loop system is not
stable for

a 2 ½0:66768; 0:99995Þ

This example clearly show that using a direct linear change between two controllers can result in
a stability problem. This problem will become even more distinct in the case where we want to
change between more that two controllers. A direct jump from one stabilizing controller to
another stabilizing controller is not in general a useful method. This will in many cases result in
spikes in the outputs, which is not acceptable. It is therefore necessary to provide a systematic
way to obtain on-line controller change without getting stability or transient problems.

In the following, a concept based on the Youla–Jabr–Bongiorno–Kucera (YJBK)
parameterization will be introduced for handling on-line controller changes without resulting
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in any closed-loop stability problems. As a result of this, the implementation of unstable
controllers by using stable transfer functions only is also considered in the following. At last, the
connection with gain scheduling control will be considered.

The rest of this paper is organized as follows. The YJBK parameterization is briefly
introduced in Section 2. The main results are given in Section 3. The connection between gain
scheduling control and the presented results in this is considered in Section 4. The example from
this section is considered again in Section 5 followed by a conclusion in Section 6.

2. THE YJBK PARAMETERIZATION

The YJBK parameterization is briefly introduced in this section. Let the state space system given
in (1) be described by transfer functions as follows:

S :
z ¼ Gzwwþ Gzuu

y ¼ Gywwþ Gyuu

(
ð6Þ

Moreover, let a co-prime factorization of the system GyuðsÞ from (1) and a stabilizing controller
KðsÞ from (4) be given by

Gyu ¼ NM�1 ¼ *MM�1 *NN; N;M; *NN; *MM 2 RH1

K ¼ UV�1 ¼ *VV�1 *UU; U;V ; *UU; *VV 2 RH1 ð7Þ

where the eight matrices in (7) must satisfy the double Bezout equation given by, see Reference
[1]

I 0

0 I

 !
¼

*VV � *UU

� *NN *MM

 !
M U

N V

 !

¼
M U

N V

 !
*VV � *UU

� *NN *MM

 !
ð8Þ

Assume that the controller KðsÞ is an observer-based feedback controller given by

KðsÞ ¼
Aþ BuF þ LCy þ LDyuF �L

F 0

� �
ð9Þ

where F is a stabilizing state feedback gain such that Aþ BuF is stable and L is a stabilizing
observer gain such that Aþ LCy is stable. One possible way to construct the eight stable co-
prime matrices in (7) is then

M U

N V

 !
¼

Aþ BuF Bu �L

F I 0

Cy þDyuF Dyu I

0
B@

1
CA
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*VV � *UU

� *NN *MM

 !
¼

Aþ LCy �ðBu þ LDyuÞ L

F I 0

Cy �Dyu I

0
B@

1
CA ð10Þ

Based on the above co-prime factorization of the system GyuðsÞ and the controller KðsÞ; we can
give a parameterization of all controllers that stabilize the system in terms of a stable parameter
QðsÞ; i.e. all stabilizing controllers are given by [2]:

KðQÞ ¼ UðQÞVðQÞ�1 ð11Þ

where

UðQÞ ¼ U þMQ; VðQÞ ¼ V þNQ; Q 2 RH1

or by using a left factored form

KðQÞ ¼ *VVðQÞ�1 *UUðQÞ ð12Þ

where

*UUðQÞ ¼ *UU þQ *MM; *VVðQÞ ¼ *VV þQ *NN; Q 2 RH1

Using the Bezout equation, the controller given either by (11) or by (12) can be realized as an
LFT in the parameter Q;

KðQÞ ¼ FlðJK ;QÞ ð13Þ

where JK is given by

JK ¼
UV�1 *VV�1

V�1 �V�1N

 !
¼

*VV�1 *UU *VV�1

V�1 �V�1N

 !
ð14Þ

3. CONTROLLER IMPLEMENTATION

First, let us consider a controller change between two stabilizing controllers by using the YJBK
parameterization. The following theorem shows that it is possible to switch from a stabilizing
controller to another stabilizing controller while maintaining stability.

Theorem 3.1

Let the system be given by (1) and let a number of stabilizing controllers for the system be given
by Ki: Then Ki; i ¼ 1; . . . ; p; can be implemented as K0ðQiÞ :¼ FlðJK0

;QÞ where JK0
is formed in

analogy with (14) and where the stable Qi parameter is given by

Qi ¼ Xið *UUiV0 � *VViU0Þ ¼ Xi
%QQi; i ¼ 1; . . . ; p
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or

Qi ¼ Xið *VViðKi � K0ÞV0Þ; i ¼ 1; . . . ; p

with

Xi ¼ M�1
0 Mi; i ¼ 1; . . . ; p

The proof of Theorem 3.1 is given in Appendix A. The proof can also be found in
Reference [3].

Note that in the above theorem, it is not assumed that the co-prime factorization of Gyu is the
same, i.e. that N andM are the same for both controllers K0 and Ki as assumed in Reference [4],
for example.

A state space realization of the Qi parameter from Theorem 3.1 is given in the following
lemma.

Lemma 3.2

Assume that the stabilizing controllers Ki are given as observer-based feedback controllers.
Possible state space realizations of JK ; %QQi and Xi are then given by

JK ¼

Aþ BuF þ LCy þ LDyuF �L Bu þ LDyu

F 0 I

�ðCy þDyuFÞ I �Dyu

0
B@

1
CA

%QQi ¼
Aþ LiCy Bu þ LiDyu �Li

Fi �I 0

� �
�

Aþ BuF0 �L0

F0 0

Cy þDyuF0 I

0
B@

1
CA

Xi ¼
Aþ BuFi Bu

Fi � F0 I

� �

Proof

Lemma 3.2 follows directly from Theorem 3.1 by using the state-space description of the co-
prime factors given by (10). &

In general, the most typical case is when we want to change from a P controller to a more
advanced controller, such as an observer-based controller. Let us consider the case where the
nominal controller is a P controller and the second controller is an observer-based controller.
The state space realization of a P controller is given by

KpðsÞ ¼
0 0

0 DP

� �
ð15Þ

Copyright # 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51–66

H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN56



From the general state space description of the co-prime factors given in Reference [2], we can
derive state space realizations of the factors when a P controller is applied. The co-prime factors
are given by

M U

N V

 !
¼

Aþ BuFP Bu 0

FP I DP

Cy 0 I

0
B@

1
CA

*VV � *UU

� *NN *MM

 !
¼

Aþ BuDPCy �Bu BuDP

FP �DPCy I DP

Cy 0 I

0
B@

1
CA ð16Þ

where FP is a fictitious state feedback gain that stabilizes Aþ BuFP: The derivation of (16) is
based on the assumption that the system does not include a direct term.

To simplify the Q term, we can select FP to be the same as the state feedback gain F1 in the
observer-based controller K1: This will make X1 ¼ I ; see Lemma 3.2. Note that for more than
one observer-based controller, Xi; i ¼ 2; . . . ; p will, in general, not be equal to the identity
matrix. Based on the co-prime factorization given in (16), we have the following result:

Lemma 3.3

Assume that the nominal stabilizing controller K0 is a P controller and K1 is an observer-based
feedback controller. State space realizations of JK ; %QQ1 and X1 are then given by

JK ¼

Aþ BuF1 0 Bu

ðF1 �DPCyÞ DP I

�Cy I 0

0
B@

1
CA

%QQ1 ¼
Aþ L1Cy BuDp � L1

F1 �Dp

� �

X1 ¼ I

In connection with the above lemma, it is important to point out that the implementation
involves a separate implementation of the state feedback dynamics and the observer dynamics,
respectively.

These results show how it is possible to implement a controller as a stable Q parameter based
on another stabilizing controller. The result also shows that it is possible to change the
controller online without any jumps, just by scaling the Q parameter from zero to full value
continuously. The closed-loop system is guaranteed to be stable for all values of Qi: This is very
useful in connection with implementation of unstable controllers.

Moreover, the above result can also be applied in connection with implementation of unstable
controllers for a stable system, where no other stabilizing controller is implemented. From
Theorem 3.1, we have the following result.
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Lemma 3.4

Let Kunstable ¼ K1 ¼ U1V
�1
1 ¼ *VV�1

1
*UU1; U1;V1; *UU1; *VV1 2 RH1 be an unstable controller for a

stable system GyuðsÞ ¼ N ¼ *NN; N; *NN 2 RH1: The unstable controller can then be implemented as

K1 ¼ K0ðQ1Þ ¼ Q1 I þNQ1ð Þ�1

where

Q1 ¼ M1
*UU1

where M1; *UU1 and *VV1 satisfies the Bezout equations:

*VV1M1 � *UU1N1 ¼ I

Proof

The proof of Lemma 3.4 follows directly from Theorem 3.1 by using that K0ðQÞ is given by (12)
with Gyu stable and K0 ¼ 0: &

To implement an unstable controller K1 as described in Lemma 3.4, it is also possible to
describe the controller as

K1 ¼ M1
*UU1ðI þN1

*UU1Þ
�1 ð17Þ

It is easy to show that the implementation of an unstable controller given in Reference [5] is
equivalent with the above implementation based on the YJBK parameterization, [6]. Further,
note that K1 given in (17) can also be obtained directly from Lemma 3.3 by using DP ¼ 0:

If the system is unstable, the above results cannot be applied directly. Instead, Theorem 3.1
can be used, provided the system is strongly stabilizable. In this case, there will exist stable
controllers that will stabilize the unstable system, [7]. The unstable controller can then be
implemented using a stable stabilizing preliminary controller and the controller implementation
of Theorem 3.1 to implement the unstable controller by using stable transfer functions (co-prime
factors) only.

The result in Theorem 3.1 gives an implementation of a multivariable controller as a specific
stable Q parameter in a parameterization of all stabilizing controllers. Theorem 3.1 provides one
way to change the applied controller from K0 to Ki online in closed-loop and also in a way such
that the closed-loop system is stable for all applied controllers. Further, we do not necessarily
need to be limited to the use of two controllers given by K0 and Ki: It is not only possible to
change the controller from K0 to one of the p controllers given by Ki; it is also possible to change
the controller Ki to Kj ; i; j ¼ 1; . . . ; p; i=j: In the case where we want to apply controllers that
are a combination of all p (or a subset) stabilizing controllers, we get the following result.

Theorem 3.5

Let the system GyuðsÞ be given by (1) and let p stabilizing controllers for the system be given by
Ki; i ¼ 1; . . . ; p: Further, let the controllers be implemented as

Ki ¼ K0ðQÞ ¼ K0 þ *VV�1
0 QiðI þ V�1

0 N0QiÞ
�1V�1

0 ; Qi 2 RH1; i ¼ 1; . . . ; p
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with Qi given by

Qi ¼ Xið *UUiV0 � *VViU0Þ; i ¼ 1; . . . ; p

Moreover, let a linear combination of the Qi parameters be given by

Q ¼
Xp
i¼1

aiQi

with
Pp

i¼1 ai ¼ 1: Then the resulting controller K is independent of K0 and is given by

KðQÞ ¼
Xp
i¼1

aiMi
*VVi

 !�1Xp
i¼1

aiMi
*UUi

The proof of Theorem 3.5 is given in Appendix B.

Remark 3.1

It is stated in the theorem that the final controller is independent of K0: The reason is that it is
assumed that the scaling parameters ai satisfy

Pp
i¼1 ai ¼ 1: However, from a stability point of

view, there is no reason to require that the scaling parameters ai need to satisfy that the sum is
equal to 1: If they do indeed not satisfy this condition, the final controller will also be a function
of K0: It should also be pointed out that the scaling parameters does not even need to be
positive. Negative values can be allowed without any closed-loop stability problems.

Using the complete description of the controller KðsÞ given in Theorem 3.5 as a feedback
controller, it is interesting to give an explicit equation for the closed-loop system. Such an
explicit description of the closed-loop system can be applied in connection with the tuning of the
controller, i.e. the selection of the a vector, such that the closed-loop system is optimized with
respect to the operating point.

Let the complete open-loop system be described by (1). The closed-loop system from w to z;
TzwðsÞ; is then given by

TzwðsÞ ¼ FlðS;KÞ ¼ Gzw þ GzuKðI � GyuKÞ�1Gyw ð18Þ

We can now give an explicit description of the closed-loop system Tzw when the controller KðQÞ
given in Theorem 3.5 is applied.

Theorem 3.6

Let the closed-loop transfer function be given by (18). Further, let the stabilizing controller
KðQÞ be given by

KðQÞ ¼
Xp
i¼1

aiMi
*VVi

 !�1Xp
i¼1

aiMi
*UUi
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with
Pp

i¼1 ai ¼ 1: Then the closed-loop transfer function Tzw is given by

TzwðsÞ ¼ Gzw þ Gzu

Xp
i¼1

aiMi
*UUi

 !
Gyw

The proof of Theorem 3.6 is given in Appendix C.
Again, it should be pointed out that

Pp
i¼1 ai ¼ 1 is not really required. If it is not satisfied,

however, the nominal controller will also be part of the closed-loop transfer function Tzw:
The controller can now be designed based on an optimization of the closed-loop transfer

function Tzw given in Theorem 3.6. If Mi and *UUi are stable and satisfy the Bezout equation in
(8), then the closed-loop transfer function Tzw is stable. The design of the controller can then be
done in open loop, which make e.g. multiobjective controller design more easy. This concept has
been used in Reference [8] in connection with a multi-objective design method based on
optimization of sensitivity functions.

4. GAIN SCHEDULING CONTROL

The relation between the proposed switching concept of multivariable controllers and gain
scheduling control is considered in this section. For a description of gain scheduling control, see
e.g. References [9–11].

The main idea in gain scheduling control is to switch between a number of pre-designed
controllers with respect to the variation in the system. The variation can be a result of parameter
variations and non-linearities in the system. In the switching method presented in this paper, the
switching is derived with respect to changes of performance conditions.

This difference has also a major impact on the stability conditions for the closed-loop
systems. For the method presented in this paper, the closed-loop stability is obtained by
requiring that the nominal closed-loop system is stable and that the YJBK parameter Q is
stable. Stability of systems including gain scheduling controllers are much more involved.
Here, it is required that the applied controller will stabilize the non-linear system at the actual
working point. The stability condition will not be changed much if the gain scheduling
controllers are implemented by using the switching approach from this paper. In this case,
stability of the nominal feedback loop together with stability of the YJBK parameter will not
guarantee closed-loop stability. The reason is that the closed-loop system Tzw given in Theorem
3.6 will not be an affine function of the YJBK parameter Q: Q will also appear in the feedback
loop of the closed-loop system, [2, 12]. This means that Q needs to be considered in connection
with a feedback system.

However, it is possible to apply the switching method from this paper in connection with gain
scheduling control with advantages. Using this approach, it is possible to separate the gain
scheduling controller into two parts, a nominal controller related with the nominal performance
of the system and a controller part related with the robustness of the feedback system. The last
part is implemented by the YJBK parameter Q:

Let a gain scheduling controller be given by KðyÞ; where y is the scheduling parameter. The
controller for the nominal system is given by Kð0Þ: Based on this controller, the YJBK
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parameterization is derived resulting in the following feedback controller:

u ¼ KðyÞy ¼ FlðJK ;QðyÞÞy ð19Þ

or
u

s

 !
¼ JK

y

r

 !

r ¼ QðyÞs ð20Þ

It can be shown, see References [2, 12], that the open-loop transfer function from r to s depends
directly of the parameter variations and non-linearities in the system. The transfer function will
be zero in the nominal case. This means that there will be an explicit decoupling of the YJBK
parameter QðyÞ in the feedback controller. It is then clear that the QðyÞ part of the controller is
closely related with the robustness of the closed-loop feedback system.

From the above description of the application of the YJBK parameterization in connection
with gain scheduling control, it is also clear that it cannot be guaranteed that QðyÞ will always be
a stable system. Further, this gives also a very direct connection between the variations in the
system and the associated feedback part of the controller, given by QðyÞ: It is possible to apply
this connection in order to establish a performance validation of the closed-loop system.

5. EXAMPLE

Now, let us again consider the motivation example from Section 1. Based on the results given in
the above section, we are now able to give a correct set-up for the controller Ka described in (5).
Using the result from Lemma 3.3, we get directly that Ka needs to be given as

Ka ¼ KðQðaÞÞ ¼ FlðJK ;QðaÞÞ

where JK and QðaÞ are given by

JK ¼

�5:9413 0:35054 0:85619

1:00 �7:00 �2:4495

0:0 2:4495 0:0

0
BB@

1
CCA

0

0

0

0
BB@

1
CCA

1:0

0:0

0:0

0
BB@

1
CCA

ð987:06 � 4999:6 253110Þ �1000 1:0

ð�1:0 5:0 � 253:1139Þ 1:0 0

0
BBBBBBBB@

1
CCCCCCCCA

QðaÞ ¼ a�

�2:1283 45:642 �2310:5

0:35357 �3:7679 �166:07

�0:13121 3:1056 �3:3212

0
BB@

1
CCA

�990:87

0:64643

0:13121

0
BB@

1
CCA

ð�12:941 0:35054 0:85619Þ 1000

0
BBBBB@

1
CCCCCA
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with this structure we have

Ka¼0 ¼ DP

and

Ka¼1 ¼ K1

Note that using the above controller Ka; the a parameter is not restricted to be in the interval
½0; 1�:

Further, note that the closed-loop poles of the system is invariant of the a parameter. The
closed-loop system has the following stable closed-loop poles:

polescl;Q ¼

�998:67

�25:1218

�0:9022

�7:7082þ 1:1005i

�7:7082� 1:1005i

�5:3047þ 1:1643i

�5:3047� 1:1643i

�0:6660þ 25:027i

�0:6660� 25:027i

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

The closed-loop poles given above are the combination of the closed-loop poles when the P
controller and when the H2 controller is applied, respectively.

6. CONCLUSIONS

This paper demonstrates a number of successful applications of the YJBK-parameterization to
problems of implementing multivariable controllers.

First of all, by using the YJBK-parameterization, it is possible to switch between controllers
in a stable way. If the switch is established by a simple linear interpolation of the transfer
functions of two stabilizing controllers, stability is not guaranteed during the transition. This
lack of closed-loop stability is removed by using a parameterization in connection with the
controller implementation.

Furthermore, it is also possible to optimize a controller given as a combination of a number
of pre-designed controllers. This optimization can be done on-line, thereby facilitating adaptive
optimization of the controller.

Another important issue is implementation of unstable controllers. Again, by using the
YJBK-parameterization, it has been shown how unstable controllers can be implemented by
using stable transfer functions only. This is especially important in connection with starting up
unstable controllers.
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APPENDIX A: PROOF OF THEOREM 3.1

Proof

Clearly, %QQi is a stable transfer matrix. We just need to show that K0ðQiÞ ¼ Ki when the above Q
is applied and Xi is stable.

K0ðQiÞ ¼K0 þ *VV�1
0 QiðI þ V�1

0 N0QiÞ
�1V�1

0

¼K0 þ *VV�1
0 Xi

*VViðKi � K0ÞV0ðI þ V�1
0 N0Xi

*VViðKi � K0ÞV0Þ
�1V�1

0

¼K0 þ *VV�1
0 Xi

*VViðKi � K0ÞðI þN0Xi
*VViðKi � K0ÞÞ

�1

¼K0 þ *VV�1
0 Xi

*VViðI þ ðKi � K0ÞN0Xi
*VViÞ

�1ðKi � K0Þ

¼K0 þ *VV�1
0 Xið *VV�1

i þ ðKi � K0ÞN0XiÞ
�1ðKi � K0Þ

¼K0 þ *VV�1
0 Xið *VV�1

i þ *VV�1
i

*UUiN0Xi � *VV�1
0

*UU0N0XiÞ
�1ðKi � K0Þ

¼K0 þ *VV�1
0 Xið *VV�1

i ðI þ *UUiNiÞ � *VV�1
0

*UU0NiÞ
�1ðKi � K0Þ

¼K0 þ *VV�1
0 Xið *VV0Mi � *UU0NiÞ

�1 *VV0ðKi � K0Þ

¼K0 þ *VV�1
0 ð *VV0M0 � *UU0N0Þ

�1 *VV0ðKi � K0Þ

¼K0 þ ðKi � K0Þ

¼Ki; i ¼ 1; . . . ; p

From Lemma 3.2, we directly have that Xi is stable. &

APPENDIX B: PROOF OF THEOREM 3.5

Proof

The proof of Theorem 3.5 is derived for the case when p ¼ 2: This will simplify the proof and it
is without loss of generality.

Let the Q parameter be given by

Q ¼ xQ1 þ yQ2

¼ xM1ð *UU1V0 � *VV1U0Þ þ yM2ð *UU2V0 � *VV2U0Þ

¼ xM1
*VV1ðK1 � K0ÞV0 þ yM2

*VV2ðK2 � K0ÞV0

with xþ y ¼ 1:

Copyright # 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51–66

MULTIVARIABLE CONTROLLER TRANSITIONS 63



The resulting controller KðQÞ is then given by

KðQÞ ¼K0 þ *VV�1
0 QðI þ V�1

0 N0QÞ�1V�1
0

¼K0 þ *VV�1
0 ðxX1

*VV1ðK1 � K0Þ þ yX2
*VV2ðK2 � K0ÞÞ

� ðI þN0ðxX1
*VV1ðK1 � K0Þ þ yX2

*VV2ðK2 � K0ÞÞÞ
�1

¼K0 þ *VV�1
0 ðI þ ðxX1

*VV1ðK1 � K0Þ þ yX2
*VV2ðK2 � K0ÞÞN0Þ

�1

� ðxX1
*VV1ðK1 � K0Þ þ yX2

*VV2ðK2 � K0ÞÞ

¼K0 þ *VV�1
0 ðM0 þ ðxM1ð *UU1 � *VV1K0Þ

þ yM2ð *UU2 � *VV2K0ÞÞN0Þ
�1

� ðxM1
*VV1ðK1 � K0Þ þ yM2

*VV2ðK2 � K0ÞÞ

¼K0 þ ðM0
*VV0 þ ðxM1ð *UU1 � *VV1K0Þ

þ yM2ð *UU2 � *VV2K0ÞÞN0
*VV0Þ

�1

� ðxM1
*VV1ðK1 � K0Þ þ yM2

*VV2ðK2 � K0ÞÞ

¼ K0 þ ðM0
*VV0 þ xM1ð *UU1N0

*VV0 � *VV1U0
*NN0Þ

þ yM2ð *UU2N0
*VV0 � *VV2U0

*NN0ÞÞ
�1

� ðxM1
*VV1ðK1 � K0Þ þ yM2

*VV2ðK2 � K0ÞÞ

¼ K0 þ ðxM1
*VV1 þ yM2

*VV2

þ ðI � xM1
*VV1 � yM2

*VV2ÞM0
*VV0

þ ðxM1
*UU1 þ yM2

*UU2ÞN0
*VV0Þ

�1

� ðxM1
*VV1ðK1 � K0Þ þ yM2

*VV2ðK2 � K0ÞÞ

Copyright # 2004 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2004; 25:51–66

H. NIEMANN, J. STOUSTRUP AND R. B. ABRAHAMSEN64



¼ K0 þ ðxM1
*VV1 þ yM2

*VV2 þ x *UU1ð *MM1N0 � *NN1M0Þ *VV0

þ y *UU2ð *MM2N0 � *NN2M0Þ *VV0Þ
�1

� ðxM1
*VV1ðK1 � K0Þ þ yM2

*VV2ðK2 � K0ÞÞ

¼ K0 þ ðxM1
*VV1 þ yM2

*VV2Þ
�1

� ðxM1
*VV1ðK1 � K0Þ þ yM2

*VV2ðK2 � K0ÞÞ

¼ ðxM1
*VV1 þ yM2

*VV2Þ
�1ðxM1

*UU1 þ yM2
*UU2Þ &

APPENDIX C: PROOF OF THEOREM 3.6

Proof

Using a YJBK parameterization, it can be shown that the closed-loop system is given by [2]

TzwðsÞ ¼ Gzw þ GzwM0
*UU0Gew þ GzuM0Q *MM0Gyw

Using the Q given by

Q ¼
Xp
i¼1

aiQi

where

Qi ¼ Xið *UUiV0 � *VViU0Þ

with Xi ¼ M�1
0 Mi: Without loss of generality, let p ¼ 2: The closed-loop transfer function Tzw is

then given by

Tzw ¼Gzw þ GzuðM0
*UU0 þ xM1ð *UU1V0 � *VV1U0Þ *MM0 þ yM2ð *UU2V0 � *VV2U0Þ *MM0ÞGyw

¼Gzw þ Gzuðð1� xM1
*VV1 � yM2

*VV2ÞM0
*UU0 þ xM1ð *UU1 þ yM2ð *UU2ÞV0

*MM0ÞÞGyw

¼Gzw þ GzuððxM1
*UU1 þ yM2

*UU2Þ þ ðxM1
*UU1 þ yM2

*UU2ÞN0
*UU0 � ðxU1

*NN1 þ yU2
*NN2ÞM0

*UU0ÞGyw

¼Gzw þ GzuððxM1
*UU1 þ yM2

*UU2Þ þ xU1ð *MM1N0 � *NN1M0Þ *UU0 þ yU2ð *MM2N0 � *NN2M0Þ *UU0ÞGyw

¼Gzw þ GzuðxM1
*UU1 þ yM2

*UU2ÞGyw &
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