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The capability of a spacecraft to detect in 
time a fault and to identify or to isolate the 
failed functionality and component without 
ground diagnosis is one of the key features 
enabling automated space missions and/or 
safety critical space vehicle.  

Today’s spacecrafts or launchers  rely 
mainly on hardware redundancy (associated 
to voting mechanisms) and consistency 
checks to perform autonomous failure detec-
tion of sensors. Failure detection of actuators 
is mainly based on rough detection of abnor-
mal dynamics behaviour. However, a high 
level of hardware redundancy for the sole 
purpose of failure detection may be undesir-
able for cost, volume and mass reasons. 

Beyond hardware redundancy, the fault 
detection may need to look at the plant output 
relative to a model-based estimate of that out-
put. Such model-based methods raise the is-
sue of modeling errors, that associated with 
tight detection threshold, may lead to a high 

false or missed alarm rate. In addition, envi-
ronment perturbations can mask the effect of a 
given fault. Hence, the need of robust model-
based fault estimation methods. 

The controlled re-entry in Earth’s atmos-
phere of a Re-usable Launch Vehicle (RLV) is 
one of the scenarios in which fast and robust 
fault detection is more relevant and challeng-
ing, as described in the following bullets: 
− Highly uncertain plant: During re-entry the 

vehicle undergoes rapid changes in aero-
dynamic flight properties whose precise 
knowledge is not available. Also, there are 
also other major sources of uncertainty in 
the plant model, specially regarding mass, 
inertia and COG, critical for accurate con-
trol. Moreover, the atmosphere is another 
pernicious source of un-modelled perturba-
tions. 

− Fast dynamics: The re-entry flight enve-
lope is very demanding. The total velocity 
of the vehicles varies from circa Mach 28 
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to Mach 1.5, whereas typical guidance 
profiles require for the vehicle to perform 
fast bank reversals from 70 to –70 de-
grees in short time intervals (around 30 
seconds).  

− Coupled time varying plant: The plant is 
controlled through the vehicle’s attitude, 
inherently as a varying MIMO plant. The 
two main sources of coupling are the in-
ertial and the aerodynamic coupling, 
which vary in relative importance during 
the re-entry.  

− Non-linear plant: The angular motion of 
the re-entry vehicle constitutes a non-
linear plant, in which the aerodynamic 
torques play an important role. They vary 
during the re-entry phase, yielding in 
practice a set of different non-linear 
plants. 
This paper presents the application to the 

6 DoF RLV re-entry problem of two well 
known model based  robust estimation tech-
niques: Stoustrup-Niemann  [1] and Man-
goubi [2]; It shall be noted that the implemen-
tation in the study of these two techniques did 
not reach a sufficient maturity level to yield 
conclusive detection results, only preliminary. 
Subsequent design iterations shall be carried-
out. 

On the other hand, the work performed 
has been highly beneficial for the identifica-
tion of critical design issues and the deriva-
tion of lessons learnt to be taken into account 
in future design loops. These critical points 
and lessons learnt are explicitly addressed in 
the last chapter of the paper. 

The filters have been designed and tuned 
using a RLV re-entry FDI test-bench. This 
test-bench includes detailed models of the en-
vironment (atmosphere and gravity) and the 
vehicle dynamics and kinematics, and the 
complete GNC loop making use of a state-of-
the art  Non-liner Dynamic Inversion (NDI) 
controller. It is used to perform a thorough 
performance assessment and benchmarking of 
the synthesized fault estimation filters.   

1. Scenario Characterisation 

1.1. RLV Re-entry Scenario 

The study is based on a RLV Earth re-
entry scenario. The RLV is based on the geo-
metrical and dynamical features of  a HL-20/X-
38 vehicle class, comprising two-flaps and two 
rudders, independently driven by four Electro-
Mechanical Actuators (EMA) 

The RLV carries the following set of sen-
sors and actuators: 
− Inertial Measurement Unit (IMU) 
− Flush Air Data Sensing System (FADS) 
− Reaction Control System (RCS) 
− Aerodynamic Control Surfaces (EMAs) 

The RLV re-entry can be divided into five 
phases according to the availability of the on-
board sensors and actuators. A re-entry refer-
ence trajectory (see Figure 1) was generated us-
ing a guidance algorithm (STS+) based on 
available reference profiles in terms of angle of 
attach vs. energy and drag acceleration vs. en-
ergy. 

 
Fig.1 RLV re-entry trajectory 
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1.2. Faults definition  

The following two fault modes have been 
considered: 
− One sensor fault on the upper part of the 

trajectory where navigation plays a lead 
role in the sense that an early detection of 
a sensor degradation is crucial to enable a 
successful recovery decision. Specifically 
this will correspond to an IMU fault in 
Phase I of the re-entry affecting the mis-
alignment of the gyroscope angular ve-
locity components.  

− One actuator fault on the lower part of 
the trajectory where bank reversal ma-
noeuvres are more frequent and demand-
ing. Specifically this will correspond to 
an flap aerodynamic surface EMA failure 
due to reduced dynamical response in 
phase V-a of the re-entry. 

1.3. Attitude controller  

To complete the system it is necessary to 
close the loop with a suitable controller. The 
implemented controller is based on the Non-
linear Dynamic Inversion (NDI) technique 
[3], suitable for all the re-entry phases. 

Figure 2 shows the performance of the 
NDI controller in the lower part of the atmos-
phere in the presence of uncertainties. 

2. FDI problem formulation 

2.1. FDI problem formulation 

The FDI problem considered in the study is 
shown in Figure 3. The plant inputs (u) are the 
moments commanded by the control system to 
the RCS and the deflections commanded to the 
vehicle aero-surfaces. The output (y) is com-
posed by the measured spacecraft angular ve-
locity, spacecraft acceleration and the measured 
angle of attack (AoA) and sideslip. 

The output of the FDI shall be the estima-
tion of the faults (f) entering the plant and a 
fault detection signal  (fd). The plant distur-
bances (d) are applicable noises on each of the 
spacecraft subsystems plus the environment 
perturbations. 

 

2.2. System modelling 

The re-entry scenario under study accounts 
both rotational and translational dynamics, be-
ing the vehicle controlled in attitude over a ref-
erence trajectory. 

The equations of motion are formulated 
under the assumptions that the aero-elasticity of 
the RLV vehicle is neglected; the translational 
and rotational motion are coupled and that the 
RCS actuation system produces pure moments 
without translational forces. 
The aerodynamics of the re-entry vehicle is 
formulated on the basis of two major aspects: 
the aerodynamic database and the aerodynamic 
forces and moments. The former, namely the 
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Fig. 3 FDI problem layout and components 
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Fig. 2 Monte Carlo run (500 simulations) of controlled 

angle of attack (left), under parametric uncertainties 
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aerodynamic coefficients, are needed to un-
dertake the calculation of the later. 

The IMU is modelled considering biases, 
noises, scale factors and misalignments, while 
a performance model of the FADS  including 
noise was used. 

The RCS were modelled with a perform-
ance model in body axes, whereas the EMAs 
model account for a number of linear and 
non-linear effects, including delay, quantisa-
tion, second-order dynamics, rate limits, satu-
ration and scale factors. 

2.3. FDI plant 

The original non-linear plant was linear-
ised around selected relevant points in the re-
entry trajectory. This linearization has to take 
into account several issues, such as a simplifi-
cation of the complete equations, linearization 
of the aerodynamic coefficients and avoid-
ance of singular points (e.g. a change in the 
layers of the atmosphere model). 

The resulting plant has 20 states, with 7 
inputs (commands to RCS and EMAs) and 8 
outputs (measured velocities and accelera-
tions, plus AoA and sideslip) 

The plant resulted observable, strictly 
speaking, but in practice, for the two scenar-
ios, the ratio between the maximum and 
minimum singular values was very high. This 
was caused by ill-conditioning at both lineari-
zation points. 

The validity of the plant was analyzed 
through residual analysis (residual, autocorre-
lation and cross-correlation plots) putting in 
evidence some non-modelled dynamics to be 
introduced in the FDI problem as dynamical 
uncertainties. 

2.4. Uncertainties 

Model uncertainty comes from different 
sources and requires different representations. 
We have identified two types of uncertainty in 
the plant model at hand: parametric and dy-
namic uncertainties. 

Parametric uncertainties are associated to 
model parameters. In Table 1 we present a list 
of the parametric uncertainties considered in 
this study, including the subsystems they be-
long to. 

There are two main sources of dynamics 
uncertainties in the plant model: 
− Un-modelled dynamics and linearization 

uncertainty in the aerodynamic database. It 
has been represented as output dynamic 
uncertainty by a diagonal weighting ma-
trix. 

− Linearization uncertainty in several sub-
systems of the plant. This source of uncer-
tainty has been represented as lumped un-
certainty. The outcome is a rational trans-
fer function weight matrix corresponding 
to a multiplicative uncertainty representa-
tion. Figure 4 show the frequency response 
of uncertainty for several points away from 
the linearization point.  
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Fig. 4 Linearization uncertainty of the rotational dynam-

ics during phase I 

Table 1 Parametric uncertainties. 
Subsystem Parameter 

Rotational dynamics Moments of inertia 
Products of inertia 

Translational dynamics Mass 

Gyroscopes Scale factors 
Misalignments 

EMA Scale factor 
Dynamics parameters 

FADS Gas constant for air 
Adiabatic constant 
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4.Stoustrup-Niemann robust FDI method 

The first robust FDI technique considered 
is the one developed by Stoustrup-Niemann. 
Through this method [1], the fault estimation 
problem can be formulated as a standard 
problem approach based on the standard for-
mulation developed for robust control. This 
approach has been employed for a wide-set of 
problems and is valid for FDI design in sys-
tems with model (dynamic or unstructured) 
uncertainty, systems with parametric uncer-
tainty and parametric faults and a class of 
non-linear systems. Important is to note that it 
is specially well suited for treating parametric 
and additive failures in a combined set-up. 

4.1. Results for the sensor case 

After a structural analysis of the plant [4] 
it was found that a part of measurement sys-
tem could be de-coupled from the rest of the 
system, yielding a much more manageable re-
duced order model. 

The implemented filter was only capable 
of detecting the fault in the first component of 
the angular rates (p,q,r), as the magnitude of 
the other faults were below noise level. 

Figure 5 shows the fault estimate on p for 
several runs in the presence of uncertainties 
without the controller. The filter responses in 
all cases. 

It is relevant to note that the inclusion of 
the controller damps the fault and affects its de-
tectability. Figure 6 shows the results for fp 
with the inclusion of the NDI controller. 

4.2. Results for the actuator case 

Due to plant high ill-conditioning, a re-
duced order model with 8 states was obtained 
without loosing the dynamic properties of the 
plant. The fault is separated in three compo-
nents. Figure 7 shows the results for the second 
component. Only partial results were obtained 
in open-loop. Moreover, results show that the 
filter requires a large time to detect the fault 
and that there is a bias in the estimated signal. 
Further tuning was identified as required. 

 
Fig. 5 Results of Stoustrup-Niemann method for fault 

on angular rate p without controller 

 
Fig. 7 Fault impact on the second fault component for 

the actuator fault scenario 
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5. Mangoubi robust FDI method 

The second robust fault estimation 
method considered is the one developed by  
R.S. Mangoubi [2]. This method is robust to 
failure mode as well as noise and plant model 
uncertainties. It is based on min-max detec-
tion and isolation functions and makes use of 
a robust H-inf filter.  The Mangoubi method 
has been originally derived for additive faults.  

5.1. Results for the sensor case 

As in the previous method, a reduced or-
der model comprising the measurement sys-
tem can be found, facilitating the design. Fig-
ure 8 show the results, without uncertainties, 
for the lumped fault f∆ (encompassing a linear 
combination of  fp and fq signals), in the pres-
ence of uncertainties. The estimation signal 
does not correspond directly with the fault but 
since it is quite different from the signal in the 
nominal case, it might be used for detection 
purposes. 

The steady state error of the fault esti-
mate in the uncertain system make it difficult 
to use the estimate directly for a fault detec-
tion, whereas in the nominal case, the fault es-
timate can be applied directly by selecting a 
suitable threshold. 

5.2. Results of the actuator case 

Since the Mangoubi method can only deal 
with additive faults, the parametric fault on the 
EMA needs to be converted first to an additive 
fault. Also a reduced order model with 9 states 
was obtained without loosing the dynamic 
properties of the plant. 

Figure 9 shows the simulation results of 
the nominal fault estimator. It can be seen that 
it is possible to see a difference between the 
fault-free case and the faulty system, although 
very slowly. This divergence can be used to de-
sign a detection function. The spike at the be-
ginning can be reduced by proper tuning the 
initial state vector. 

7. Critical issues and lessons learnt 

As anticipated in the introduction, the re-
sults obtained are preliminary and are not con-
clusive due to a set of critical issues. The iden-
tification of these critical issues plus the analy-
sis of the shortcomings present in the approach 
followed, lead to the identification of a set of 
lessons learnt. 

These lessons learnt have been classified 
into different groups based on the different 
stages of the FDI design process. 

Fig. 9  Simulation of the actuator case for the nominal 
system.  Solid line: fault free system; dashed line: with 

fault. 

Fig. 8 Results with uncertain system in faulty case for f∆ (a 
linear combination of  fp and fq signals) 
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7.1 Requirements analysis 

− The plant definition and fault selection 
will affect decisively the representativity 
and usefulness of the results. Enough ef-
fort must be put on their definition. 

− The fault selection and FDI requirements 
must be refined and iterated as more in-
sight is got during the whole process. 

7.2 FDI problem assessment 

− The definition of the faults shall not be 
decoupled from the plant dynamics, spe-
cially under closed loop control. 

− It is very important to count with faults 
that are relevant, detectable and that al-
low for the system to take recovery action 
after their detection. 

7.3 FDI plant modelling 

− A structural analysis of the plant at early 
stages can provide much information for 
subsequent modelling and designing 
tasks. The higher the order of the plant is, 
the higher the order of the synthesised 
failure detection filter. Working with high 
order filters has many disadvantages or 
could even result unfeasible in practice 

− The FDI plant modelling process shall be 
conducted on an iterative basis until the 
final reduced order LTI plant and the as-
sociated uncertainty representation have 
been validated and deemed suitable for 
FDI design. 

− A correct formulation of the system un-
certainty is crucial for robust FDI. If sys-
tem uncertainty is underestimated, the ro-
bust performance of the filter will be 
compromised. On the other hand, if un-
certainty is too large, it will mask failure 
effects. 

7.4 FDI filter design 

− The FDI design must be iterative but also 
incremental as for the FDI plant consid-
ered, beginning with simple models that al-
low the designed to get confident with 
plant behaviour and fault effects so that de-
sign problems can be promptly spotted. 

− It should be taken into account that the in-
clusion of a controller changes the dynam-
ics of the closed-loop system and therefore 
might affect the detectability of the faults. 

− It is important to get as simple models de-
scription of the systems as possible without 
loosing relevant dynamics, because it will 
reduce the complexity of the residual gen-
erators/filters very much. 

− Another issue is the complexity of the sys-
tem vs. the complexity of the applied filter 
design method. Using very complex design 
methods, there will in general be an upper 
bound on the order of the system that can 
be handled in a proper and suitable way by 
the design algorithm 
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