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A general architecture for fault tolerant control is proposed. The architecture is based on the
(primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK
parameterization to quantify the performance of the fault tolerant system. The approach sug-

gested can be applied for additive faults, parametric faults and for system structural changes.
The modelling for each of these fault classes is described. The method allows for design of pas-
sive as well as for active fault handling. Also, the related design method can be fitted either to
guarantee stability or to achieve graceful degradation in the sense of guaranteed degraded per-

formance. A number of fault diagnosis problems, fault tolerant control problems, and feed-
back control with fault rejection problems are formulated/considered, mainly from a fault
modelling point of view. The method is illustrated on a servo example including an additive

fault and a parametric fault.

1. Introduction

There are many trends in the development of man-made
systems, but one seems to be common widely across
industrial areas: the systems become increasingly more
complex. Elementary reliability theory tells us at least
one challenge in this connection. As the complexity
grows, so does the probability of critical faults occurring
in the system.
This is one of the motivations for the increasing inter-

est in the design of fault tolerant control systems, where
the objective is to disallow one or several faults to
develop into an overall system failure.
In the search for systematic design methods for fault

tolerant control, recent research efforts have focused on
deriving control laws based on a specific fault model.
The best choice of fault model will depend on the
purpose of the model. A number of faults can naturally
be considered both as additive faults or as parametric
faults. However, a random choice might not be optimal.
The fault model needs to be selected with respect to the

design objectives, i.e. whether only fault diagnosis is

required, the objective is to preserve stability in faulty

situations, or even to recover performance during faults.
In the past, additive fault models have been the most

popular models, especially in connection with fault diag-

nosis. Modelling e.g. an actuator fault as an additive

fault will generally be very useful in connection with

fault detection and/or fault isolation. In connection

with closed-loop systems, an actuator fault might result

in instability. Using an additive fault model description

in this case, the fault will be considered as an external

signal entering the system. The fault signal of the model

will therefore not affect the stability of the system, at

least not for bounded fault signals. This small example

clearly indicates that the description of possible faults

in a dynamic system needs to be selected in very close

relation with the application of the fault description/

fault model.
In this paper, three types of faults/fault models will

be considered. The three types are as follows:

. additive faults;

. parametric faults;

. system structural changes.*Corresponding author. Email: hhn@oersted.dtu.dk
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These fault models can be considered in connection with
the following applications:

. fault detection, fault isolation and fault estimation;

. fault tolerant control with stability recovery, i.e. the
control system can handle faults in the system without
resulting in an unstable closed loop system. Note, that
additive faults cannot challenge the stability of a
linear system;

. feedback control with performance recovery, i.e. the
effect from the fault is minimized in the closed loop
by a feedback controller.

In this paper only linear systems will be considered.
However, a number of the presented results can be
generalized to non-linear systems without further
assumptions.
The results of this paper relate to the areas of fault

tolerant control and robust control. These areas are
very well described in a large number of papers and
books. Without going into details, let us mention the
books by Basseville and Nikiforov (1993), Chen and
Patton (1998) and Gertler (1998) for a good introduc-
tion to the area of fault diagnosis. In Patton (1997a, b)
and Blanke et al. (2000, 2001) and references therein,
good introductions to the area of fault tolerant control
can be found. Most of these papers describe various
concepts for FTC. However, in the past years, also a
number of theoretical results has been presented in
this area, see e.g. Wang and Wu (1993), Wu (1993),
Wu and Chen (1996), Staroswiecki et al. (1999), Wu
et al. (2000), Stoustrup and Niemann (2001), Zhou
and Ren (2001), Staroswiecki et al. (2002). The area of
robust control has been investigated in a large number
of books and papers. Let us only mention the books
written by Zhou et al. (1995) and Skogestad and
Postlethwaite (1996).
A significant application area of fault tolerant control

deserving specific mention is the area of reconfigurable
flight systems which has been a pioneering area for
several of the methodologies. To mention a few refer-
ences in this area, we point to Boskovic and Mehra
(1998), Boskovic et al. (1998), Ganguli et al. (2002) in
which further references can be found.
Two main classes of approaches can be distinguished

in the literature on fault tolerant control: active FTC
and passive FTC. In active FTC, the controller is recon-
figured whenever a fault is detected. In passive FTC,
the controller is fixed; its fault tolerance is obtained
by an a priori design based on the fault models,
such that this fixed controller is able to handle all
possible faults. Recently, an existence result has been
shown for the fault tolerant stabilization problem in
the paper by Stoustrup and Blondel (2004) where
further references to passive FTC can be found.
Active FTC relies on fault detection, fault isolation,

and fault estimation. An approach to fault estimation
which can be integrated with the FTC approach
presented in this paper, can be found in Stoustrup and
Niemann (2002).

The focus in this paper will be on using various fault
models in connection with FTC. The paper will give an
overview of the various design problems for controller
reconfiguration in a general FTC architecture, depend-
ing on the type of faults.

A general architecture based on the YJBK parameter-
ization will be proposed which allows us to handle all
fault model types and to implement solutions for all
the design problems described. The architecture is
based on the results presented in Niemann and
Stoustrup (2002, 2005).

This paper is organized as follows. In section 2, the
system setup is given for three different fault types
together with a number of definitions. The YJBK param-
eterization is first introduced in section 3. A new control-
ler architecture for FTC is introduced in section 4
followed by a study of controller reconfiguration in the
FTC architecture for the three types of fault models in
section 5. An example is considered in section 6.
Finally, we arrive at a conclusion in section 7.

1.1. Nomenclature

Capital letters will denote matrices or matrix valued
functions. AT is the transposed of A. A nominal
system is described by � and a stabilizing feedback
controller for � is given by �C. Further, let an uncertain
system or faulty system be given by ��, where � 2 �
represents the model uncertainty, finite sets of the fault
parameters or the input fault signals. A more detailed
description of �� is given below. The interconnection
of the nominal system and the feedback controller is
given by ���C.
F lðX,YÞ ¼ X11 þ X12YðI� X22YÞ

�1X21 is the lower
Linear Fractional Transformation (LFT) of (X,Y).
The upper LFT of (X,Y) is given by F uðX,YÞ ¼
X22 þ X21YðI� X11YÞ

�1X12.
For simplicity, transfer functions are not equipped

with an explicit dependency of a complex variable ‘s’, as
it should not be possible to confuse matrices and transfer
functions when considering the context. In a few cases,
the word ‘dynamic’ has been added to explicitly refer
to a transfer function rather than a matrix.

2. Definitions and system setup

2.1. System setup

The general systems will now be described in detail by
using transfer functions. Consider the following
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generalized nominal ðrþmÞ � ðqþ pÞ system,

�:
e ¼ Geddþ Geuu

y ¼ Gyddþ Gyuu,

�
ð1Þ

where d 2 Rr is a disturbance signal vector, u 2 Rm the
control input signal vector, e 2 Rq is the external output
signal vector to be controlled, and y 2 Rp is the mea-
surement vector. G�� is the transfer function between
input � and output �.
Further, let the system be controlled by a stabilizing

dynamic feedback controller given by

�C: u ¼ Ky
�

ð2Þ

resulting in the closed-loop system

�cl ¼ ���C:

Let �� the generalized system in (1) include faults.
Three different types of faults will now be introduced.
First, let us consider systems with additive faults, ��

is then given by �A

�A:

e ¼ Geddþ
Pk

i¼1 Gef, i fi þ Geuu

¼ Geddþ Gef fþ Geuu

y ¼ Gyddþ
Pk

i¼1 Gyf, i fi þ Gyuu

¼ Gyddþ Gyf fþ Gyuu,

8>>>><
>>>>:

ð3Þ

where fi signifies the i-th fault for each i ¼ 1, 2, . . . , k.
It is further assumed that the fi is bounded and not cor-
related with the system state. The fault signal vector
f 2 Rk is a collection of fault signals fi, i ¼ 1, 2, . . . , k,
into a vector. Also, it is common in the fault detection
and isolation setting for model uncertainties to be
described as external input signals in the same manner
as disturbance signals w. In other words, w here can
be thought of representing both external disturbance
signals and signals that might arise due to model uncer-
tainties, see e.g. Frank and Ding (1994).
However, in the cases where we would like to detect,

isolate and/or estimate parameter changes or uncer-
tainty variations in the system, the fault model described
by (3) cannot in general be applied. In the case
where the system includes parametric faults, �� can be
described by �P

�P:

z ¼ Gzwwþ Gzddþ Gzuu

e ¼ Gewwþ Geddþ Geuu

y ¼ Gywwþ Gyddþ Gyuu,

8><
>: ð4Þ

where w 2 Rkw and z 2 Rkz are the external input and
output vectors. The connection between the external
output and the external input is given by

w ¼ �z,

where � represents the parametric faults in the system.
Note that the above description is also applied in
connection with the description of systems including
model uncertainties, see e.g. Zhou et al. (1995). In this
case, the connection between the external output and
the external input is given by

w ¼ �z

where � 2 � represent the model uncertainties. The
system is the described by ��. Closing the loop from
w to z in �P by using �, we get

�P,� ¼ F uð�P, �Þ:

Faults might change the structure of the system. Based
on a structural change of the nominal system in (1)
due to faults, the general system �� then takes the
following form:

�Si
:

e ¼ ~GGed,idþ ~GGeu,iu

y ¼ ~GGyd,idþ ~GGyu,iu
, i ¼ 0, . . . , k,

(
ð5Þ

where ~�� indicates a change in transfer matrix, a change
in the number of system states and number of inputs
and outputs. Note that i¼ 0 is defined as the nominal
model, �S0

¼ �. Below, it will be argued in further
detail, that it is unnecessary to define new input,
output, or disturbance signals, as ‘missing’ signals can
be modeled by transfer matrices with appropriate zero
entries.

It should be pointed out in connection with the fault
model given by (5), it is the most direct way to describe
a change in the system as a consequence of faults in the
system. However, in many cases a more detailed model
description can be obtained by using a parametric
fault model.

Throughout the paper, it will be assumed that faults
only occur one at a time.

In some of the stability results of this paper, it is an
implicit assumption, that the system remains detectable
and stabilizable after a fault has occured, such that set
of stabilizing controllers remains non-empty.

Finally, the methods proposed assume that knowl-
edge of post-fault scenarios is available a priori. As an
alternative, they can be identified. Such an approach,
however, lies outside the scope of this paper.
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2.2. Example

An example is introduced here in connection with a
description of the three types of faults introduced
above. Let’s consider the system described by the
block diagram shown in figure 1.
The system is described by the following equations:

z1 ¼ x1 ¼ G1u

z2 ¼ x2 ¼ G2x1

y1 ¼ Gsen,1x1 þ f1

y2 ¼ Gsen,2x2 þ f2,

9>>>=
>>>;

ð6Þ

where z1 and z2 are the signals to be controlled, u is the
control input and y1, y2 are two measurement signals. f1
and f2 represent additive sensor faults as e.g. bias in the
measurement signals or an increase in the measurement
noise due to a loss of filtering in the sensors. k1 and k2
represent the gains of the two sensors. A change in k1
and k2 is directly modelled as parametric faults given by

k1 ¼ k10ð1þ �1Þ, �1 2 ½�1, 0�

k2 ¼ k20ð1þ �1Þ, �2 2 ½�1, 0�,

where k10 and k20 are the nominal gains and �1, �2 are
the parametric faults.
The structure of the system changes if e.g. a sensor

falls out. Let’s assume that we only want to control z1
and the second measurement signal y2 is not available.
In this case, the new system is given by

z1 ¼ x1 ¼ G1u

y1 ¼ Gsen,1x1 þ f1

�
ð7Þ

i.e. a reduction of the nominal system given by (6).

In connection with fault diagniosis, it is possible to
model all three types of faults as additive faults. The
parametric faults in k1 and k2 can be modelled by

f1 ¼ ��1Gsen,1x1

f2 ¼ ��2Gsen,2x2:

A loss of the second sensor can be described by

f2 ¼ �Gsen,2x2 ¼ �Gsen,2G2x1

i.e. y2 ¼ 0.
The most direct way to handle the controller reconfi-

guration problem is to use the different fault types
directly, instead of transforming them to additive faults.

2.3. Definitions

Based on the system setup given above, let us give a
number of definitions in connection with feedback con-
trol and fault tolerant control. The definition of stable
feedback control and robust feedback control are
given in Zhou et al. (1995). The definitions of fault tol-
erant control are equivalent with the definitions given
in e.g. Blanke et al. (2000).

From Boyd and Barratt (1991), we have the following
definition of a design specification:

Definition 1: A design specification D is a boolean
function or test on the closed loop transfer matrix
�cl ¼ ���C.

An equivalent definition of design specification can be
found in Staroswiecki and Gehin (2001) as the standard
control problem (SCP) and later used in Blanke et al.
(2003).

The design specification given by D is tests on the
closed loop transfer matrix �cl that is either satisfied or
not satisfied, i.e. the result of the tests has a pass or fail
as the outcome. The design specifications can be given
in both the time domain and/or the frequency domain.

It is possible to combine a number of design
specifications as e.g.

Dstable ^ Dperformance: �cl

meaning that the closed loop transfer matrix �cl must
satisfy both the stability condition given by Dstable and
the performance condition given by Dperformance.

It is also possible to order the design specifications
in some cases. Let D1 and D2 be two sets of design speci-
fications that can be compared. We will say that D1 is
tighter or stronger than D2 if all transfer matrices satis-
fying D1 also satisfy D2. If at least one transfer function
exists that satisfies D2 but not D1, we will say that D1 is
strictly tighter or strictly stronger than D2.

Figure 1. Block diagram of a dynamic system including two
sub-systems and two sensors.
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Based on Definition 1 and the system setup given in
section 2.1, we can now define the following design
problems.

Problem 1: The design problem for closed loop
stability of the nominal system is given by

Dstable: �cl

where Dstable is the stability specification and �cl is the
nominal closed loop transfer matrix.

Problem 2: The open loop design problem for
performance of the nominal system is given by

Dperformance,1: �open

where Dperformance,1 is the performance specification and
�open is the nominal closed loop transfer matrix.

Problem 3: The design problem for performance of
the nominal system is given by

Dstable ^ Dperformance,1: �cl

where Dstable is the stability specification, Dperformance,1 is
the performance specification and �cl is the nominal
closed loop transfer matrix.

Problem 4: The design problem for robust stability is
given by

Dstable: �cl,�

where Dstable is the stability specification and �cl,� is the
closed loop transfer matrix as function of the model
uncertainty given by � 2 �.

Problem 5: The design problem for robust perfor-
mance is given by

Dstable ^ Dperformance,1: �cl,�

where Dstable is the stability specification, Dperformance,1 is
the performance specification and �cl,� is the closed loop
transfer matrix as function of the model uncertainty
given by � 2 �.

Problem 6: The fault tolerant control problem for
stability is given by

Dstable: �cl,�

where Dstable is the stability specification and �cl,� is the
closed loop transfer matrix as function of the fault
vector/parameter given by � 2 �.

Problem 7: The fault tolerant control problem for
stability is given by

Dstable ^ Dperformance,2: �cl,�

where Dstable is the stability specification, Dperformance,2

is the performance specification and �cl,� is the closed
loop transfer matrix as function of the fault vector/
parameter given by � 2 �.

In Problem 7, it is assumed that Dperformance,1 is stronger
than Dperformance,2.

In connection with Problems 6 and 7, it should be
pointed out that the first objective in connection with
FTC is to stabilize the feedback system, i.e. Problem 6.
However, in some cases, it might also be possible to
design the FTC part of the controller such that the
closed loop performance reduction, due to fault in the
system, is minimized. This is the case in situations
where there are sufficient sensor and actuator redun-
dancy, such that a realistic alternative to a ‘limb
home’ strategy exists.

It is now possible to give the following definitions of
the solutions to Problems 1–7.

Definition 2: Given a nominal dynamic system � and
a feedback controller �C. The feedback controller �C

is said to be a stabilizing feedback controller if and
only if the closed loop transfer matrix of the intercon-
nection ���C satisfies the stability specification of
Problem 1.

Definition 3: Given a nominal dynamic system � and
a feedforward controller �C. The feedforward controller
�C is said to satisfy nominal open loop performance if
and only if the open loop transfer matrix of � and �C

satisfies the performance specification of Problem 2.

Definition 4: Given a nominal dynamic system � and
a feedback controller �C. The feedback controller �C

is said to satisfy nominal performance if and only if
the closed loop transfer matrix of the interconnec-
tion ���C satisfies the stability and performance
specification of Problem 3.

Definition 5: Given a dynamic system �� and a feed-
back controller �C. It is assumed that � 2 � represents
the model uncertainty. The feedback controller �C is
said to be a robustly stabilizing feedback controller if
and only if the closed loop transfer matrix of the inter-
connection �� ��C satisfies the stability specification
of Problem 4.

Definition 6: Given a dynamic system �� and a feed-
back controller �C. It is assumed that � 2 � represents
the model uncertainty. The feedback controller �C

is said to be a robust performance feedback controller

Architecture for fault tolerant controllers 1095
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if and only if the closed loop transfer matrix of the
interconnection �� ��C satisfies the stability and
performance specification of Problem 5.

Definition 7: Given a set of dynamic systems �� and
a feedback controller �C. It is assumed that � 2 �
represents a finite number of faulty parameter sets.
The feedback controller �C is said to be a fault tolerant
feedback controller if and only if the closed loop trans-
fer matrix of the interconnection �� ��C satisfies the
stability specification of Problem 6.

Definition 8: Given a set of dynamic systems �� and
a feedback controller �C. It is assumed that � 2 �
represents a finite number of faulty parameter sets or
the fault input signals. The feedback controller �C is
said to be a fault tolerant feedback controller with per-
formance specifications if and only if the closed loop
transfer matrix of the interconnection �� ��C satisfies
the stability and performance specification of Problem 7.

In the rest of this paper, the performance specifications
given in Problems 3, 5 and 7 are limited to disturbance
rejection specifications. The disturbance rejection speci-
fications are given as a specification of the H2 or the H1
norm of the closed loop transfer matrix from external
input d to external output e. Using the H2 norm as the
specification, Dperformance is given by

Dperformance ¼ DH2
¼ min k���Ck2: ð8Þ

Using the H1 norm as the specification, Dperformance is
given by

Dperformance,1 ¼ D
�1
H1
¼ k���Ck1 < �1

Dperformance,2 ¼ D
�2
H1
¼ k���Ck1 < �2,

)
ð9Þ

where �1 � �2.

3. The YJBK parameterization

Before considering the three different FTC design cases,
the (primary) YJBK parameterization and the dual
YJBK parameterization are shortly introduced. The
controller architecture applied for the FTC in the fol-
lowing will be based on the YJBK parameterization.
The YJBK parameterization has also been applied in
connection with FTC in Stoustrup and Niemann
(2001), Zhou and Ren (2001).
The YJBK parameterization was first derived by

Youla et al. and independently by Kucera. It has been
described in Youla et al. (1976a, b), Kucera (1979) and
later used in many cases in connection with feedback
control, see e.g. Boyd et al. (1988), Boyd and Barratt

(1991), Grimble (1994), Dahleh and Diaz-Bobillo
(1995), Zhou et al. (1995), Tay et al. (1997), Anderson
(1998).

3.1. The Primary YJBK parameterization

Let a coprime factorization of the system GyuðsÞ from (1)
and a stabilizing controller K(s) from (2) be given by

Gyu ¼ NM�1 ¼ ~MM�1 ~NN, N,M, ~NN, ~MM 2 RH1

K ¼ UV�1 ¼ ~VV�1 ~UU, U,V, ~UU, ~VV 2 RH1,

)
ð10Þ

where the eight matrices in (10) must satisfy the double
Bezout equation given by, see Zhou et al. (1995)

I 0

0 I

� �
¼

~VV � ~UU

� ~NN ~MM

 !
M U

N V

� �

¼
M U

N V

� �
~VV � ~UU

� ~NN ~MM

 !
: ð11Þ

Based on the above coprime factorization of the system
GyuðsÞ and the controller K(s), we can give a parameter-
ization of all controllers that stabilizing the system in
terms of a stable parameter Q(s), i.e. all stabilizing
controllers are given by Tay et al. (1997)

KðQÞ ¼ UðQÞVðQÞ�1, ð12Þ

where

UðQÞ ¼ UþMQ, VðQÞ ¼ VþNQ, Q 2 RH1

or by using a left factored form

KðQÞ ¼ ~VVðQÞ�1 ~UUðQÞ, ð13Þ

where

~UUðQÞ ¼ ~UUþQ ~MM, ~VVðQÞ ¼ ~VVþQ ~NN, Q 2 RH1:

Using the Bezout equation, the controller given either
by (12) or by (13) can be realized as an LFT in the
parameter Q,

KðQÞ ¼ F lðJK,QÞ, ð14Þ

where JK is given by

JK ¼
UV�1 ~VV�1

V�1 �V�1N

 !
¼

~VV�1 ~UU ~VV�1

V�1 �V�1N

 !
: ð15Þ
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Reorganizing the controller K(Q) given by (14) results
in the closed loop system depicted in figure 2, see also
Tay et al. (1997).
The main observation to be exploited in the solution

to the fault tolerant control problem, is the following
relatively simple expression for the transfer function
from the external input d to the external output e
terms of the parameter Q

e ¼ ðGed þ GeuKðQÞðI� GyuKðQÞÞ
�1GydÞd

¼ ðGed þ GeuU ~MMGyd þ GeuMQ ~MMGydÞd,

where (11) has been exploited. Note, that the transfer
function relating d and e is affine in Q.

3.2. The dual YJBK parameterization

The dual YJBK parameterization gives a parameteriza-
tion in term of a stable parameter S of all systems
stabilized by a given controller. The parameterization
is given by Tay et al. (1997)

GðSÞ ¼ NðSÞMðSÞ�1, ð16Þ

where

NðSÞ ¼ Nþ VS,MðSÞ ¼MþUS, S 2 RH1

or by using a left factored form:

GðSÞ ¼ ~MMðSÞ�1 ~NNðSÞ, ð17Þ

where

~NNðSÞ ¼ ~NNþ S ~VV, ~MMðSÞ ¼ ~MMþ S ~UU, S 2 RH1:

An LFT representation of (16) or (17) is given by

GðSÞ ¼ F lðJG,SÞ, ð18Þ

where JG is given by

JG ¼
NM�1 ~MM�1

M�1 �M�1U

 !
: ð19Þ

The interpretation of the dual YJBK parameter S can be
investigated from the primal YJBK parameterization
shown in figure 2. It turns out that the dual YJBK
parameter S is the open loop transfer function from
r to ~rr in figure 2 (Tay et al. 1997), i.e.

S ¼ F uðJK,GyuðSÞÞ:

This fact can be used in connection with the estimation
of system changes.

In table 1, S has been calculated for a number of
different types of model uncertainties, These equations
for S will be applied in the following in connection
with parametric faults. The calculation of S as function
of � is given in Appendix A for the general case.

4. Fault tolerant controller architecture

In the sequel, an architecture for fault tolerant
controllers will be proposed, based on the YJBK param-
eterization shown in the block diagram in figure 2.
There is a number of reasons for using the architecture
from the YJBK parameterization in connection
with FTC.

Before going into details with the FTC architecture, it
is important to point out that a FTC controller consists
of two parts: a fault diagnosis (FDI-FTC) part and a
controller reconfiguration (CR-FTC) part. The first
part is used for detection and/or isolation of faults in
the system. The second part is a reconfiguration of the
feedback controller based on information from the
FDI-FTC block.

Using an FTC architecture based on the YJBK
parameterization, the Q parameter will be the CR-FTC
part of the FTC controller. This means that the CR-FTC
part of the feedback controller is a modification of the
existing controller. Thus, a controller change when a
fault appears in the system is not a complete shift to
another controller, but only a modification of the exist-
ing controller by adding a correction signal in the

Figure 2. Controller structure with parameterization.
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nominal controller, the r signal in figure 2. However, it

should be pointed out that it is possible to modify the

controller arbitrarily by designing the YJBK parameter

Q, see e.g. Tay et al. (1997), Niemann et al. (2002).
Another important thing is that the architecture also

includes a parameterization of all residual generators.
All residual signals can be described by, Frank and

Ding (1994), Gertler (1998)

r ¼ QFDI ~rr ¼ QFDIð ~MMy� ~NNuuÞ: ð20Þ

This means that it is possible to combine both fault diag-

nosis and fault tolerant control in the same architecture

without any problems. A block diagram for this FTC

architecture based on the YJBK parameterization

is shown in figure 3 for three potential parametric
faults – the generalization to any number of faults

should be obvious.
The above controller architecture applied for FTC

shown in figures 2 and 3 has a fixed structure

with respect to the number of measurement signals

and control signals. This will not in general be the

case in real applications. Here, faults in e.g. sensors

can be handled by applying other sensors in the
system, i.e. the measurement output from the system is

changed. Equivalent to faults in connection with the

actuators in the system. This type of system change

has not directly been included in the system description

given by (4) or (5). However, it is possible to include a

change of sensors and/or actuators in the FTC architec-
ture given above.
Let us consider the system Gyu given by (1). Assume

that only a subset of the sensors and the actuators

has been applied for the nominal feedback controller

Table 1. The connection between different system uncertainty descriptions in terms of � and
the dual YJBK parameter S.

System description, Gyuð�Þ The dual YJBK parameter, Sð�Þ

Gyuð�Þ ¼ ðIþ�ÞGyu Sð�Þ ¼ ~MM�ðI�N ~UU�Þ�1N

Gyuð�Þ ¼ GyuðIþ�Þ Sð�Þ ¼ ~NN�ðI�U ~NN�Þ�1M

Gyuð�Þ ¼ Gyu þ� Sð�Þ ¼ ~MM�ðI�U ~MM�Þ�1M

Gyuð�Þ ¼ GyuðI��Þ�1 Sð�Þ ¼ ~NN�ðI�M ~VV�Þ�1M

Gyuð�Þ ¼ ðI��Þ�1Gyu Sð�Þ ¼ ~MM�ðI� V ~MM�Þ�1N

Gyuð�Þ ¼ GyuðI��GyuÞ
�1 Sð�Þ ¼ ~NN�ðI�N ~VV�Þ�1N

Gyuð�Þ ¼ ðNþ�NÞðMþ�MÞ
�1 Sð�Þ ¼ � ~NN ~MM

� � �M

�N

� �
Iþ ~VV � ~UU

� � �M

�N

� �� ��1

Gyuð�Þ ¼ ð ~MMþ� ~MMÞ
�1
ð ~NNþ� ~NNÞ Sð�Þ ¼ Iþ � ~MM � ~NN

� � �U
V

� �� ��1
� ~MM � ~NN

� � M
�N

� �

Figure 3. Fault tolerant scheme with three potential para-
metric faults. The residual signal is used both for isolation
and for feedforward in the fault handling.
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K(s) given by (2). Let the system Gyu be partitioned as
follows:

Gyu ¼
Gyu,00 Gyu,01

Gyu,10 Gyu,11

� �
: ð21Þ

Further, let us use the controller given by

KðsÞ ¼
K0 0

0 0

� �
: ð22Þ

Based on this controller, the YJBK matrices then take
the following form

M U

Nu V

� �
¼

M0 M1

0 I

� �
U0 0

0 0

� �

Nu

V0 0

V1 I

� �
0
BBB@

1
CCCA

~VV � ~UU

� ~NNu
~MM

 !
¼

~VV0
~VV1

0 I

 !
� ~UU0 0

0 0

 !

� ~NNu

~MM0 0

~MM1 I

 !
0
BBBBB@

1
CCCCCA:

The YJBK parameterized controller K(Q) given by (12)
then takes the following form:

KðQÞ ¼UðQÞVðQÞ�1

¼
K0 0

0 0

� �
þ

~VV�10 � ~VV�10
~VV1

0 I

 !
Q

� Iþ
V�10 0

�V1V
�1
0 I

 !
NuQ

 !�1
V�10 0

�V1V
�1
0 I

 !
:

ð23Þ

A block diagram of the K(Q) given by (23) is shown in
figure 4.
From figure 4, it is possible to calculate the transfer

function from r to ~rr. The open loop transfer function
is the zero transfer function in the fault free case. As a
direct consequence of this, the closed loop transfer func-
tion will be an affine function of the Q parameter. Note
that the ~rr (or r) vector can still be applied in connection
with fault diagnosis and/or fault isolation.
It is clear from both figure 4 and (23) that the control-

ler architecture will allow us to use other sensors and/or
actuators that are used in connection with the nominal
controller K0.
The result of this generalization of applying the

YJBK parameterization in connection with fault tol-
erant control is that it is not a limitation of the

controller structure. The structure can handle the prob-
lem of changing sensors and/or actuators without any
problems, which is normal in connection with fault toler-
ant control. The above general controller architecture
can directly be applied in connection with the results
given in section 5.

A simplified FTC architecture is applied in Niemann
and Stoustrup (2005) in connection with passive fault
tolerant control. The idea in the passive FTC is to
remove the FDI part in the architecture. The single
CR-FTC controller Q is designed to handle all faults
in the system. Further, the CR-FTC controller will be
included all the time. This means that Q will be included
as an open loop transfer function in the nominal system
and in a feedback loop in the faulty system. The advan-
tage by this passive FTC architecture is that delays due
to fault isolation are removed from the FTC loop.

5. Controller reconfiguration

Just as in fault diagnosis, the controller reconfiguration
problem will depend strongly on the type of faults
that can appear in the system. In this paper, the various
controller reconfiguration design problems will be
described for the three different model structures given
in section 2. Especially in connection with CR-FTC
for systems with structural changes, the solution (the
selected controller structure, type etc.) will depend
strongly on the specific case. No general method

Figure 4. Block diagram for controller with a Q parameter-
ization. Note that the nominal controller does not use the

measurements employed after reconfiguration.
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with explicit design formulae exists that can handle the
general case. Much better design results can be obtained
by using dedicated design methods.
In the following, only performance specifications

based on theH1 norm are considered. However, perfor-
mance problems based on the H2 norm can be handled
in an equivalent way.

5.1. CR-FTC for systems with additive faults

In numerous systems, faults are described as additive
faults. In connection with CR-FTC, this may not be
very useful. The reason is that the additive faults can
be considered as external input signals to the system,
at least if they are assumed to be uncorrelated with the
system states. External input signals will not cause any
changes in the system dynamics. Specifically, they are
not able to change the stability of the closed-loop
system, see e.g. Zhou et al. (1995). Consider for example
faults on an actuator. Such faults will in general affect
the stability margins of the closed-loop system. CR for
systems with additive faults is therefore only relevant
if the faults that can appear enter the system outside
the closed loop. Consider the general 2� 2 system
setup with additive faults given by (3). Closing the
system by a stabilizing controller K(s) given by (2)
gives the following closed loop transfer function:

e ¼ ðGed þ GeuKðI� GyuKÞ
�1GydÞd

þ ðGef þ GeuKðI� GyuKÞ
�1GyfÞf: ð24Þ

From (24), it is clear that bounded additive faults can
not affect the closed-loop stability – only the perfor-
mance of the system will be affected. The main
CR-FTC problem as defined in Definition 7 does not
exist in this case. Instead the design of a feedback con-
troller needs to be done with respect to minimizing the
effect from additive faults on the nominal closed loop
transfer function as defined in Definition 3. This prob-
lem is equivalent to a disturbance rejection problem.
The design of the controller can be done in two steps.

First a nominal controller K0ðsÞ is designed such that the
nominal performance is satisfied. In the second step,
the YJBK parameterized controllerK(Q) given by (13) or
(14) is applied, based on the nominal controller K0ðsÞ.
Using K(Q) as the feedback controller for the system
given by (3) results in the following closed-loop system:

e ¼ ðGed þ GeuU ~MMGyd þ GeuMQ ~MMGydÞd

þ ðGef þ GeuU ~MMGyf þ GeuMQ ~MMGyfÞf

¼ ðT1d þ T2QT3dÞdþ ðT1f þ T2QT3fÞf: ð25Þ

From the above closed loop transfer function, it is clear
that the CR-FTC problem, i.e. the design of Q, is
equivalent to a disturbance rejection problem. Standard
optimization methods can be applied directly for the
design of a stable YJBK parameter Q. Using a standard
method for the design of Q, the closed loop transfer
function in (25) can be written as an LFT given by

e ¼ F lðPA,QÞ
d

f

� �
, ð26Þ

where

PA ¼
T1d T1f

� �
T2

T3d T3f

� �
0

 !
:

The standard setup design problem is shown in figure 5.
Based on the setup in figure 5 for the CR-FTC design

of Q, Problem 2 with an H1 performance specification
is then given by

Problem 8: For a given number � > 0, the H1 sub-
optimal CR-FTC performance problem for system with
additive faults is defined as the problem of designing,
if existent, a feedback controller Q, such that the closed
loop transfer function TA,cl is stable and the H1 norm
of TA,cl is less than or equal to �, where TA,cl is given by

TA,cl ¼ F lðPA,QÞ

and PA is given by

PA ¼
Ged þGeuU ~MMGyd Gef þGeuU ~MMGyf

� �
GeuM

~MMGyd
~MMGyf

� �
0

 !
:

Note that the exact, the almost exact and the optimal
design problems for Q have been considered in details
in Saberi et al. (2000).

Figure 5. The standard setup for design of Q for systems
with additive faults.
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Combining CR-FTC with a fault isolation method gives
a possibility of designing a number of Q-controllers,
every single one dedicated to a single fault case. When
faults appear in the system, the specified Q-controller
to the given fault case can then be selected. It is also
important to note that the Q controller needs to be
decoupled when there are no faults in the system, other-
wise the closed loop transfer function will be modified,
see (25). It is clear that the FTC problem in this case
is a performance problem and the closed loop stability
will not be affected by the additive faults (modeled as
bounded external signals).

5.2. CR-FTC for systems with parametric faults

In this case, the closed-loop stability can be affected by
the parametric faults, if Gyu depends on the parametric
faults. As in section 5.1, a YJBK parameterized control-
ler K(Q) is applied, where the nominal controller Kð0Þ ¼
K0 is designed for the nominal system. The YJBK
parameter is then applied for obtaining CR-FTC, i.e.
Q needs to stabilize the closed-loop system when a
fault has appeared in the system. The stability of the
closed loop system requires stability of the nominal
closed-loop system and closed-loop stability of a
loop where both Q and the parametric faults � are
included (Tay et al. 1997). The stability of the closed-
loop system is satisfied by the design of the nominal
feedback controller K(0). The other closed-loop system
that needs to be stable is given by

~SSðQÞ ¼ ðI�QSð�ÞÞ�1, ð27Þ

where S(�) is the dual YJBK parameter, depending on
the parametric faults �.
It is required that S is stable to guarantee closed-loop

stability. Combining the YJBK parameterization with
the dual YJBK parameterization, it is not a condition
that Q and S need to be stable to guarantee closed-
loop stability. Q and S just need to satisfy that the
closed-loop system given by (27) is stable (Tay et al.
1997). Using the equation from Appendix A, S(�) then
take the following form in the general case:

Sð�Þ ¼ ~MMGyw� I� ½Gzw þ GzuU ~MMGyw��
� ��1

GzuM: ð28Þ

In connection with (28), it is important to note that
the stability condition of S and/or of ~SSðQÞ in (27) for
satisfying that the faulty closed loop system is stable,
is only valid if the faulty system is still detectable
and stabilizable from the specified input signals u and
output signals y. This is a standard condition in connec-
tion with FTC systems. If the faulty system is not detect-
able and/or stabilizable, additional actuators and/or

sensors need to be included in the system to satisfy
these two conditions.
It is important to note that if S is stable, we do not need
a Q-parameter to stabilize the system. In this way, S can
be used for analyzing which faults are admissible and
how large they can be before the closed-loop system
will become unstable.
Based on the general equation for S(�) given by (28),
we have the CR-FTC design problem in Problem 6
is given by

Problem 9: The CR-FTC problem for system with
parametric faults is defined as the problem of designing,
if existent, a feedback controller Q, such that ~SSðQÞ
given by

~SSðQÞ ¼ I�QSð�Þð Þ
�1

is stable, where S is given by

Sð�Þ ¼ ~MMGyw� I� ½Gzw þ GzuU ~MMGyw��
� ��1

GzuM

In the general case, the equation for S(�) given above is
quite complicated. S(�) needs to be derived explicitly in
every single case in order to reduce the complexity of
S(�). Consider two simple cases, where the parametric
faults are placed at either the input to the system (actua-
tor faults) or at the output to the system (sensor faults),
i.e. the system given by (4) takes the following form:

Gedð�Þ Geuð�Þ

Gydð�Þ Gyuð�Þ

� �
¼

Ged Geu þ Geu�

Gyd Gyu þ Gyu�

� �
ð29Þ

for parametric faults at the input. The system given by
(4) takes the following form for parametric faults at
the output

Gedð�Þ Geuð�Þ

Gydð�Þ Gyuð�Þ

� �
¼

Ged Geu

Gyd þ �Gyd Gyu þ �Gyu

� �
:

ð30Þ

The dual YJBK parameter S is then given by

Sð�Þ ¼ ~NNu�ðI�U ~NNu�Þ
�1M ð31Þ

for parametric faults at the input and

Sð�Þ ¼ ~MMu�ðI�Nu
~UU�Þ�1Nu ð32Þ

for parametric faults at the output.
The two CR-FTC design problems for parametric

faults at the input and the output are given as follows.

Problem 10: The CR-FTC problem for system with
parametric input faults is defined as the problem of
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designing, if existent, a feedback controller Q, such that
~SSðQÞ given by

~SSðQÞ ¼ ðI�QSð�ÞÞ�1

is stable, where S is given by

Sð�Þ ¼ ~NNu�ðI�U ~NNu�Þ
�1M:

Problem 11: The CR-FTC problem for system with
parametric output faults is defined as the problem of

designing, if existent, a feedback controller Q, such
that ~SSðQÞ given by

~SSðQÞ ¼ ðI�QSð�ÞÞ�1

is stable, where S is given by

Sð�Þ ¼ ~MMu�ðI�Nu
~UU�Þ�1Nu:

So far, the stability part with respect to parametric
faults has been treated. This is the most important
part of the CR-FTC. However, it will also in some
cases be possible to design the CR-FTC controller
(the Q controller) with respect to both closed-loop sta-
bility as well as closed-loop performance. Closing the
loop of the system in (4) with the feedback controller
K(Q), we get the following closed loop transfer func-
tion, see Appendix B:

e ¼ TP,clðsÞd, ð33Þ

where

TP,clðsÞ ¼ Gedð�Þ þ Geuð�ÞðUþMQÞððV� Gyuð�ÞUÞ

þ ðNu � Gyuð�ÞMÞQÞ
�1Gydð�Þ

and

Again, using a standard setup, shown in figure 6, for the
design of the feedback controller Q, Problem 7 is then
given by

Problem 12: For a given number � > 0, the H1
CR-FTC performance problem for system with para-
metric faults is defined as the problem of designing, if
existent, a feedback controller Q, such that the closed
loop transfer function TP,cl is stable and the H1 norm
of TP,cl is less than or equal to �, where TP,cl is given by

TP,cl ¼ F lðPP,QÞ

and PP is given by

At last, let us again consider the two cases with para-

metric input faults and output faults. The general
system in (4) is then given by (29) and (30), respectively.

The general closed loop transfer function in (33) is then

given by

TP,clð�Þ ¼ Ged þ GeuðIþ �ÞðUþMQÞ

� ðV� GyuðIþ �ÞUÞ
�

þðNu � GyuðIþ �ÞMÞQ
��1

Gyd

¼ Ged þ GeuðIþ �ÞðUþMQÞ

� ðI� ~NNu�ðUþMQÞÞ�1 ~MMGyd ð34Þ

for parametric faults at the input and

TP,clð�Þ ¼ Ged þ GeuðUþMQÞððV� ðIþ �ÞGyuUÞ

þ ð ~NNu � ðIþ �ÞGyuMÞQÞ
�1
ðIþ �ÞGyd

¼ Ged þ GeuMð ~UUþQ ~MMÞ ~MM

� ðI� �Nuð ~UUþQ ~MMÞÞ�1ðIþ �ÞGyd ð35Þ

for parametric faults at the output, respectively.
Using a standard setup formulation, we get the

following open loop transfer functions for the design

of the Q controller in the two cases (see figure 6 for

Gedð�Þ Geuð�Þ

Gydð�Þ Gyuð�Þ

 !
¼

Ged þ Gew�ðI� Gzw�Þ
�1Gzd Geu þ Gew�ðI� Gzw�Þ

�1Gzu

Gyd þ Gyw�ðI� Gzw�Þ
�1Gzd Gyu þ Gyw�ðI� Gzw�Þ

�1Gzu

 !
:

PP ¼
Gedð�Þ þ Geuð�ÞUðV� Gyuð�ÞUÞ

�1Gydð�Þ GeuðM�UðV� Gyuð�ÞUÞ
�1
ðNu � Gyuð�ÞMÞÞ

ðV� Gyuð�ÞUÞ
�1Gydð�Þ �ðV� Gyuð�ÞUÞ

�1
ðNu � Gyuð�ÞMÞ

 !
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the standard setup). For the input fault case, we have

and for the output fault case, we have

respectively.
As in the additive fault case, it is possible to combine

CR-FTC with fault isolation. It is then possible to
design a number of Q controllers, one for every single
fault case and then select a specific Q controller when
a fault appears in the system. A system setup including
a CR-FTC controller for 3 potential parametric faults
is shown in figure 3, where QCR, i are the CR-FTC part
and QFDI, i are the residual generators for the FDI part.

5.3. FTC for systems with structural changes

This is the most relevant problem in connection with
FTC. From a feedback point of view, a fault in a
closed-loop system will in most cases change the
structure of the system. However, in many cases, these
structural changes can be described by using LFTs as
considered in the parametric fault case.
In the following, let us just consider the system given

by transfer functions described by (5). It is further
assumed that the system can only be in the normal
(nominal) mode and in one abnormal mode. The
abnormal mode is given by:

�S :
~GGed

~GGeu

~GGyd
~GGyu

 !
: ð38Þ

The closed loop transfer function for the nominal

system � and �S when the feedback controller in (2)

is applied is given by

Tcl ¼ Ged þ GeuKðI� GyuKÞ
�1Gyd

TS,cl ¼ ~GGed þ ~GGeuKðI� ~GGyuKÞ
�1 ~GGyd

)
ð39Þ

respectively.
Following the line from the above section, we can

again calculate S as a function of the system changes.

The structural changes of Gyu can be described in the

following way:

~GGyu ¼ Gyu þ ð ~GGyu � GyuÞ

¼ Gyu þ �:

From table 1, we have that

S ¼ ~MM�ðI�U ~MM�Þ�1M ð40Þ

Using � ¼ ~GGyu � Gyu in S, we get directly

S ¼ ð ~MM ~GGyu � ~NNuÞð ~VV� ~UU ~GGyuÞ
�1:

If S given by (40) is unstable, the controller needs to be
modified by using the Q feedback controller for stabiliz-
ing the system in the abnormal mode. Based on this fact,
Problem 6 for systems with structural changes is then
given by

Problem 13: The CR-FTC problem for system with
structural changes is defined as the problem of design-
ing, if existent, a feedback controller Q, such that ~SSðQÞ
given by

~SSðQÞ ¼ ðI�QSÞ�1

PP,Ið�Þ ¼
�GGedð�Þ �GGeuð�Þ

�GGydð�Þ �GGyuð�Þ

 !
¼

Ged þ GeuðIþ �ÞUðI� ~NNu�UÞ
�1 ~MMGyd GeuðIþ �ÞðI�U ~NNu�Þ

�1M

ðI� ~NNu�UÞ
�1 ~MMGyd ðI� ~NNu�UÞ

�1 ~NNu�M

 !
ð36Þ

PP,Oð�Þ ¼
�GGedð�Þ �GGeuð�Þ

�GGydð�Þ �GGyuð�Þ

 !
¼

Ged þ GeuM ~UUðI� �Nu
~UUÞ�1ðIþ �ÞGyd GeuMðI� ~UU�NuÞ

�1

~MMðI� �Nu
~UUÞ�1ðIþ �ÞGyd

~MM�NuðI� ~UU�NuÞ
�1

 !
ð37Þ

Figure 6. The standard setup for design of Q for systems
with parametric faults.
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is stable, where S is given by

S ¼ ~MM�ðI�U ~MM�Þ�1M

with � ¼ ~GGyu � Gyu.
Now, let us consider the closed loop transfer function

from d to e given by (39). Let the system given in the
abnormal mode be described as additive changes of
the nominal transfer functions, i.e.

~GGed
~GGeu

~GGyd
~GGyu

 !
¼

Ged Geu

Gyd Gyu

� �
þ

�ed �yd

�eu �yu

� �
: ð41Þ

In the general case, the � parameters defined in (41) will
be function of a single � parameter, i.e.

�ed �yd

�eu �yu

� �
¼

�edð�Þ �ydð�Þ

�euð�Þ �yuð�Þ

� �

due to the fact that every system change is caused by
a single fault. The closed loop transfer function TS,cl is
given by

TS,cl ¼ ~GGed þ ~GGeuKðI� ~GGyuKÞ
�1 ~GGyd

¼ ðGed þ �edÞ þ ðGeu þ �euÞKðI� ðGyu þ �yuÞKÞ
�1

� ðGyd þ �ydÞ: ð42Þ

In the special case where Gyu does not change in the
abnormal mode, i.e. TS,cl in (42) is given by

Ted,SðsÞ ¼ ðGed þ �edÞ

þ ðGeu þ �euÞKðI� GyuKÞ
�1
ðGyd þ �ydÞ

In this case, the stability of the closed loop system will
not be affected by the system change. The system
change will only affect the performance of the closed
loop system. This is equivalent to the additive fault
case, where the design of Q turns out to be an open
loop design problem. Note that a change in Ged and/or
Geu might not be detectable from the measurement
signal y, which can make it impossible to do any com-
pensation for the fault in the system. This case will not
be discussed further.
As a closing of this section, we will give the H1,

CR-FTC performance design problem for system with
structural changes. To do this, K(Q) is applied. It is

further assumed that �yuð�Þ ¼ �. This assumption is

without loss of generality. Problem 7 is then given by

Problem 14: For a given number � > 0, the H1
CR-FTC performance problem for system with struc-

tural changes is defined as the problem of designing, if

existent, a feedback controller Q, such that the closed

loop transfer function TS,cl is stable and the H1 norm

of TS,cl is less than or equal to �, where TS,cl is given by

TS,cl ¼ F lðPS,QÞ

and PS is given by

6. Example

A simple servo system is considered below. The system
includes two faults, an additive sensor fault and an inter-
nal parametric fault. The focus in this example will be
on the CR-FTC part of the FTC controller. The FDI
part will only consist of a simple fault detector. The
reason is that this part has not been considered in this
paper. It is important to point out that the general
FTC architecture does not limit the FDI block to a
simple fault detector as will be used in this paper.

Let the nominal servo system be given by the
following state space realization:

_xx ¼ Axþ Bddþ Buðrref � uÞ

y ¼ Cyx,

where rref is the reference input, d is a disturbance load,
u is the control input and y is the measurement signal.
The state space matrices are given by

A ¼
0

1

k0

0 �
1

�
ð1þ k1k2�0Þ

0
BB@

1
CCA Bu ¼

0
1

�
k1k2

 !

Bd ¼

0
1

�
k1

 !
Cy ¼ 1 0

� �
,

k0 ¼ 12:5 k1 ¼ 25 k2 ¼ 9 � ¼ 0:05 �0 ¼ 0:04,

�0 is the tacho gain in an internal feedback loop. It is
assumed that the tacho gain �0 can be reduced due to
a fault in the tacho. This fault will result in a parametric
fault. Further, the measurement signal can be affected
by bias in the sensor. The bias is modelled as an additive

PS ¼
ðGed þ �edÞ þ ðGeu þ �euÞU ~MMðI� �U ~MMÞ�1ðGyd þ �ydÞ ðGeu þ �euÞðI�U ~MM�Þ�1M

~MMðI� �U ~MMÞ�1ðGyd þ �ydÞ ~MM�ðI�U ~MM�Þ�1M

 !
:
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fault at the measurement signal. The system including
the two faults then take the following form:

_xx ¼ Axþ Bwwþ Buðrref � uÞ

z ¼ Czx

y ¼ Cyxþ fy,

where fy is the additive sensor fault. Further, Bw and
Cz are given by

Bw ¼

0
1

�
k1k2�0

 !
¼ Bu�0

Cz ¼ 0 1
� �

:

The loop from w to z is closed by

w ¼ ��z, �� 2 ½0, 1�

with �� ¼ 0 as the nominal value.
Based on this setup, we get directly the following

transfer functions for the system:

Gzw Gzf Gzu

Gyw Gyf Gyu

� �

¼
CzðsI� AÞ�1Bu�0 0 CzðsI� AÞ�1Bu

CyðsI� AÞ�1Bu�0 I CyðsI� AÞ�1Bu

 !
:

Let us use an observer based controller with state feed-
back gain F such that Aþ BuF is stable and an observer
gain L such that Aþ LCy is stable. The two gains are
given by

F ¼ ð�3:3333 0:0196 Þ

L ¼
�109:71

�615670

� �
:

Using an observer-based feedback controller, it is pos-
sible to write up the coprime factorization of the
system and the controller directly. One possible way to
construct the eight stable coprime matrices in (10) is
then Tay et al. (1997):

M U

N V

 !
¼

Aþ BuF Bu �L

F I 0
CyF Dyu I

0
@

1
A

~VV � ~UU

� ~NN ~MM

 !
¼

Aþ LCy �BuL L

F I 0
Cy �Dyu I

0
@

1
A

9>>>>>>>=
>>>>>>>;
ð43Þ

with CyF ¼ Cy þDyuF and BuL ¼ Bu þ LDyu. Note that
Dyu ¼ 0 for the servo system.

It is also possible to write up the coprime matrices
based on the general state space description of the feed-
back controller. This can be found in Tay et al. (1997).

As a detector, a simple varians detector is applied.
The detector is given by

� ¼

ð
r2dt:

The occurrence of an abrupt fault, an additive fault or
a parametric fault, in the system will either give a
change in the increasing rate of � or a step in �.
Together with information of the ampliture of the resi-
dual signal r, it is possible to detect and also isolate
the occurring of abrupt faults in the system.

First, let’s consider a simulation of the FDI part of
the FTC architecture when faults occur in the system.
The simulations are derived with an additive or a para-
metric fault occuring at t ¼ 2:5 sec. The simulation
results are shown in figures 7–9 for the nominal case,
the system with an additive fault or with a parametric
fault. The additive fault is given by fy ¼ 0:1 and the
parametric fault is given by �� ¼ 0:25.

It can be seen from figure 7, that the additive fault
only has a minor effect on the output, i.e. the output
is almost identical with the output from the nominal
system. A parametric fault in the system has a larger
effect on the output. It is clear that the system has lost
performance due to the parametric fault.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

y

Output of the servo system

Figure 7. The time response of the output y of the servo

system. The solid line is the output for the nominal system,
the dashed line is for the system with an additive fault and the
dashdot line is for the system with a parametric fault.
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In figure 8, the residual signals are shown. The abrupt
change of the additive fault can be seen very clearly at
the residual signal as a spike. The parametric fault
result in an oscillation with the same frequency as the
input signal.
The three detection signals � are shown in figure 9.

The detection signal for the nominal system will increase
with a fixed rate. The additive fault will result in a jump
of �, whereas a parametric fault will change the increas-
ing rate of �. Based on these observations, it can be seen

that both the additive fault as well as the parametric
fault can be detected. Further, due to the different
effect on �, it is also possible to isolate the two faults.
Only the parametric fault will be considered in the rest
of this example.

Calculating the dual YJBK parameter S given by (28)
can now be done by using the coprime factorization in
state space form. Sð��Þ is then given by

Sð��Þ ¼ CyðsI� A� LCyÞ
�1Bu�0��

�

�
I� Cz sI� A� BuFð Þ

�1

� Bu I� F sI� A� LCy

� ��1
Bu

� 	
�0��

	�1
� CzðsI� A� BuFÞ

�1Bu

¼ ~NNu�0��ðI�Nz
~VV�0��Þ

�1Nz

by using that Gzw ¼ NzM
�1.

Based on the above observer based feedback control-
ler, the poles for S can now be calculated. It turns out
that S is unstable when the tacho gain zero loop, i.e.
�� ¼ 1. In this case, the poles of S are given by

polesðSÞ ¼
�141:76 �240:49i
20:91 �25:67i

� �

i.e. S is not stable for all �� 2 ½0, 1�. Hence, a Q control-
ler needs to be applied for stabilizing the system in
this case.

Let’s consider the Problem 9 for the design of a
stabilizing Q controller. Q must be designed such that

~SSðQÞ ¼ ðI�QSð�ÞÞ�1, �� 2 ½0, 1�

is stable. In this case, a constant Q controller can be
applied to stabilize ~SS, given by

QðsÞ ¼ q, q 2 ½�291 � 50:4�:

The implementation of the Q controller must be done
based on the YJBK parameterized controller given by
(14) and (15).

Now, let the parametric fault �� in the system be given
as a constantly increasing function with �� ¼ 0 at
t ¼ 2:5 sec and �� ¼ 10 at t ¼ 4:0 sec. The resulting
servo system will be unstable, if nothing is done. The
nominal controller is reconfigurated by a stabilizing
Qstab. This reconfiguration is based on a detection of a
change in the system by using a bound on the detection
signal �. This detection will take place around
t ¼ 3:5 sec. The Qstab controller is given by

Qstab ¼ �100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.02

0

0.02

0.04

0.06

0.08

0.1

Time [sec]

r
Residual signals

Figure 8. The residual signal r of the servo system. The solid

line is the output for the nominal system, the dashed line is
for the system with an additive fault and the dashdot line is for
the system with a parametric fault.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2 x 10−4 Detection signals

d

Time [sec]

Figure 9. The detection signal � for the servo system. The
solid line is the output for the nominal system, the dashed
line is for the system with an additive fault and the dashdot

line is for the system with a parametric fault.
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for stabilizing the system. The simulation results are
shown in figures 10–12.
It can be seen from figure 10 that the feedback

controller including a reconfiguration at t ¼ 3:5 sec
stabilizes the system. The system is stabilized by the
applied FTC controller, but there is a degradation of
the performance. The residual signal r is shown in
figure 11. The parametric fault results in a major
increase of the residual signal r. Equivalent to figure
12, the detection signal � gives also a very clear indica-
tion of a fault in the system, i.e. the increasing rate
changes in the invertal t ¼ 2:5 sec to 4:0 sec.
As it turns out from figure 10, the performance is not

preserved with the selected Qstab. Instead of considering

the Problem 9, we can design Q with respect to both
stability and performance, i.e. use Problem 12.
Optimizing a constant Q with respect to stability and
performance, i.e. with respect to the specified input
signal, gives the following optimal Qperf

Qperf ¼ �175:

The resulting response of the system is shown in
figure 13.

It is clear from figure 13 that the peformance is recov-
ered after the controller is reconfigurated by using Qperf.
It is also clear that the servo system loss performance

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

y
Output of the servo system

Figure 13. The time response of the output y of the servo

system.

0 1 2 3 4 5 6 7 8 9 10
−1.5

−1

−0.5

0

0.5

1

1.5
Output of the servo system

y

Time [sec]

Figure 10. The time response of the output y of the servo

system.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10−3 Detection signal

d

Time [sec]

Figure 12. The detection signal � for the servo system.

0 1 2 3 4 5 6 7 8 9 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Time [sec]

r

Residual signal

Figure 11. The residual signal r of the servo system.
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from the time that the fault occurs in the system until the
controller is reconfigurated, in the time interval from
t ¼ 2:5 sec to around t ¼ 3:5 sec.
It is important to point out that the optimal Qperf

applied in this simulation is only optimal with respect
to the specified input signal and for �� ¼ 1. The first
problem can be handled by designing a dynamic Qperf,
such that the reconfigurated controller is optimal in a
specified frequency range. Here, Problem 12 must be
used directly. The second problem dealing with optimal-
ity only for a specified parametric fault is a little more
complex. The solution is to design a number of optimal
controllers Qperf, and then select the best one based in
the fault diagnosis of the parametric fault. This will
require that it is both possible to detect, isolate and also
come up with a reasonable estimate of the parametric
fault. This is possible in this example, because it is possi-
ble to use the increasing rate of � as ameasure of the para-
metric fault. However, this will not in general be the case.

7. Conclusion

An architecture for fault tolerant control has been pro-
posed. This architecture relies on a common framework
for fault modelling based on linear fractional transfor-
mations, which facilitates modelling of additive faults,
parametric faults, as well as faults that change the
model structure.
By applying the (primary) YJBK parameterization,

an additional controller parameter has been introduced
as the main tool to achieve fault tolerance. A feature of
the YJBK parameterization is that it automatically
includes a diagnostic signal.
Systematic design procedures to obtain numerical

values for the correction parameter have been indicated,
which rely on optimization-based control design
techniques.
In order to quantify the fault tolerance of a given con-

figuration, the dual YJBK parameterization has been
introduced. The magnitude of the corresponding param-
eter reflects the magnitude of faults that can be
handled by the FTC system without losing e.g. stability
or performance.
Although faults leading to structural changes of a

system in principle calls for ad hoc solutions, it has still
been possible to give general formulae for fairly rich and
important classes of structural changes.
The example demonstrated how the method can be

used to maintain stability for a simple servo loop, even

if the tacho constant is faulty. Both the FDI-FTC part
as well as the CR-FTC part have been considered in the
example. It is shown that the stabilization problem using
FTC controllers is easy compared with the problem of
recovering the closed-loop performance.

Appendix A. Calculation of S(D)

Let us consider the transfer function from u to y in (4)
when parametric faults appear in the system. The
transfer function is given by

Gyuð�Þ ¼ F uðGunc, �Þ, ð44Þ

where

Gunc ¼
Gzw Gzu

Gyw Gyu

� �

S needs to satisfy

GyuðSÞ ¼ Gyuð�Þ, ð45Þ

where GyuðSÞ is given by (16) or (17). Equation (45)
given now directly that:

~MM�1SðIþM�1USÞ�1M�1 ¼ Gyw�ðI� Gzw�Þ
�1Gzu:

Rewriting this equation gives us

S ¼ ðI� ~MMGyw�ðI� Gzw�Þ
�1GzuUÞ

�1

� ~MMGyw�ðI� Gzw�Þ
�1GzuM

¼ ~MMGyw�ðI� ðI� Gzw�Þ
�1GzuU ~MMGyw�Þ

�1

� ðI� Gzw�Þ
�1GzuM

¼ ~MMGyw�ðI� Gzw� � GzuU ~MMGyw�Þ
�1GzuM

¼ ~MMGyw�ðI� ðGzw þ GzuU ~MMGywÞ�Þ
�1GzuM

Appendix B. Calculation of Tcl

Closing the upper loop in (4) with � gives

Gedð�Þ Geuð�Þ

Gydð�Þ Gyuð�Þ

 !
¼

Ged þ Gew�ðI� Gzw�Þ�1Gzd Geu þ Gew�ðI� Gzw�Þ�1Gzu

Gyd þ Gyw�ðI� Gzw�Þ�1Gzd Gyu þ Gyw�ðI� Gzw�Þ�1Gzu

 !
:
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Let the controller K(Q) be given by

KðQÞ ¼ K0 þ ~VV�1QðIþ V�1NuQÞ
�1V�1

¼ ðUþ ~VV�1QðIþ V�1NuQÞ
�1
ÞV�1:

The closed-loop transfer function from e to d, Tcl is then
given by

Tclð�,QÞ ¼ Gedð�Þ þ Geuð�ÞKðQÞ

� ðI� Gyuð�ÞKðQÞÞ
�1Gydð�Þ

¼ Gedð�Þ þ Geuð�ÞðUþ ~VV�1Q

� ðIþ V�1NuQÞ
�1
ÞV�1ðI� Gyuð�Þ

� ðUþ ~VV�1QðIþ V�1NuQÞ
�1
ÞV�1Þ�1Gydð�Þ

¼ Gedð�Þ þ Geuð�ÞðUðIþ V�1NuQÞ þ ~VV�1QÞ

� ðVðIþ V�1NuQÞ � Gyuð�ÞUðIþ V�1NuQÞ

� Gyuð�Þ ~VV�1QÞ�1Gydð�Þ

¼ Gedð�Þ þ Geuð�ÞðUþUV�1NuQþ ~VV�1QÞ

� ðVþNuQ� Gyuð�ÞU� Gyuð�ÞV
�1NuQ

� Gyuð�Þ ~VV�1QÞ�1Gydð�Þ

¼ Gedð�Þ þ Geuð�ÞðUþMQÞðV� Gyuð�ÞU

þ ðNu � Gyuð�ÞMÞQÞ
�1Gydð�Þ:
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