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This paper deals with bumpless transfer between a number of observer-based controllers in a

gain scheduling architecture. Linear observer-based controllers are designed for a number of

linear approximations of a non-linear system in a set of operating points, and gain scheduling

control can subsequently be achieved by interpolating between each controller. The Youla-

Jabr-Bongiorno-Kucera (YJBK) parameterization is used to achieve a smooth scheduling

between the controllers. This approach produces a scheduled controller as a linear fractional

transformation between a fixed controller and a scheduling parameter. The approach is tested

on a simple, but highly non-linear model of a fossil fuel power plant.

1. Introduction

Gain scheduling control is a popular approach to

tracking control of ‘‘well-behaved’’ non-linear systems,

whose behaviour can be adequately described using a

selection of local linearized models. These linearizations

are typically evaluated in a set of operating points that

capture the key modes of operation. Linear controllers

are then synthesized for the system in these points, for

instance using classical PID controllers or robust and/

or optimal design methods, ensuring that some relevant

performance specifications are met in the vicinity of the

operating point in question. The individual controllers

are parameterized according to one or more scheduling

variables, signals that indicate where the system state is

currently situated relative to the operating points.

The resulting family of controllers is then implemented

as a single overall control law whose parameters are

changed in accordance with the scheduling variables.

Alternatively, a number of controllers can be operated

in parallel, by letting the actual control be a weighted

combination of the outputs of the individual controllers.

The weights are chosen in a way such that if the system

state is close to an operating point then the correspond-

ing controller will dominate the control signal. Such

classical gain scheduling control has been employed in

numerous practical applications in diverse fields, such

as power plant control (Hangstrup et al. 1999,

Kallappa and Ray 2000, Parlos et al. 2000), flight

control systems (Hyde and Glover 1993, Nichols et al.

1993), automotive control (Hrovat and Tran 1993),

and process control (Crisafulli and Pierce 1999). Rugh

and Shamma (2000) provides a general survey of gain

scheduling applications and methods.
A recent paper on the anti-windup and bumpless trans-

fer problem is Zaccarian and Teel (2002). In this work,

the emphasis has been on systems with saturations,

where an L2 optimization based approach is suggested.
The present paper relies on coprime factorization

techniques. A coprime factorization approach to anti-

windup problems was pioneered in (Kothare et al. 1994).
An interesting application of coprime factor tech-

niques to bumpless transfer can be found in Ford and

Glover (2000). This paper addresses the spark ignition

engine idle speed control problem, where the initial

state of an off-line controller is conditioned in order to

reduce the bump when it is turned on-line.
In Edwards and Poslethwaite (1998), an H1 type

method was proposed for anti-windup/bumpless transfer*Corresponding author. Email: dimon,jakob,ktr@control.aau.dk
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problems, partly in order to circumvent the assump-
tion that the controller should be minimum-phase, as
introduced in the classical work (Hanus et al. 1987).
The bumpless transfer problem has been treated

in a linear quadratic framework in Turner and Walker
(2000). In this work, the input of an off-line controller
is modified in order to minimize bumps in a linear
quadratic sense.
In this paper, we present a novel method for bumpless

transfer between observer-based multi-variable gain
scheduled controllers. To make matters precise, we will
define bumpless transfer in the following way within
the scope of this paper. Consider a simple, PI-controller
designed to control a system in the vicinity of an
operating point

uðtÞ ¼ Kp1eðtÞ þ KI1x1ðtÞ

with _xx1ðtÞ ¼ x1ðtÞ þ eðtÞ representing the integral state,
u(t) the control signal and e(t) the control error. Kp1

and KI1 are the proportional and integral gains, respec-
tively. Now assume that we wish to switch to another
controller for the same system given by Kp2 and KI2 at
some instant �tt. Simply replacing Kp1 by Kp2 and KI1

by KI2 without concern for the integral state is very
likely to cause a large change in uð �tt Þ if KI2 is signifi-
cantly different from KI1 or if the integral state of the
new PI-controller starts at some arbitrary value at �tt.
The straightforward way of achieving bumpless transfer
is instead to reset the integral state such that a smooth
control action is achieved:

Kp1eð�tt Þ þ KI1x1ð�tt Þ ¼ Kp2eð�tt Þ þ KI2x2ð�tt Þ ,

x2ð�tt Þ ¼
ðKp1 � Kp2Þeð�tt Þ þ KI1x1ð�tt Þ

KI2
:

Gain scheduling can obviously be achieved by switching,
i.e., by using the gains of one controller as long as the
system state is close to the corresponding operating
point and simply replacing them by the gains of the
next controller when the system state is sufficiently
close to the next operating point. The controller
gains can also be mixed in a smooth manner, for
instance via linear interpolation. To continue our
simple PI example, a gain scheduled control law could
be chosen as

uðtÞ ¼ ð�ðtÞKp1 þ ð1� �ðtÞÞKp2ÞeðtÞ

þ ð�ðtÞKI1 þ ð1� �ðtÞÞKI2ÞxðtÞ

_xxðtÞ ¼ eðtÞ,

where � 2 ½0, 1� is a scheduling variable. More than two
controllers can be combined into one control law,

in which case some controllers that are designed for
operating points far away from the current plant state
may be disengaged entirely (reset to 0 or run in ‘open
loop’).

It is important to note that, even if two stabilising
controllers K1 and K2 are designed for the same linear
system, there is no guarantee that a simple linear com-
bination of the two controllers K ¼ �K1 þ ð1� �ÞK2

stabilizes the system for 0 < � < 1. An example of the
contrary can be found in Niemann et al. (2004)
Obviously, the least one should require from a gain
scheduled control loop is that stability is ensured for
every possible combination of controllers in the same
operating point. In this paper, we present a controller
construction that guarantees stability for any � 2 ½0; 1�
when applied to one linear system. While it does not
guarantee stability in between the operating points, it
is still an improvement compared to the simple linear
interpolation. Furthermore, as pointed out in Shamma
and Athans (1990), in the classical gain scheduling
control setup there is a ‘‘hidden feedback’’ induced
by the scheduling itself, which may cause the plant-
controller loop to lose stability if it is forced to change
operating point too rapidly. The approach presented
in this paper does not address the hidden feedback
and hence requires that the scheduling must happen
relatively slowly. However, it is worth noting that the
proposed scheme allows for arbitrarily fast scheduling
of controllers if the system remains in a fixed operating
point.

Linear parameter varying control (Apkarian and
Gahinet 1995, Packard 1994, Scherer 2001), which is a
form of gain scheduling, can be used to design control-
lers with stability guarantees for fast parameter and/or
operating point changes, but they require an exact
model of the plant in between the operating points.
Such models are not always available or may be difficult
and costly to obtain—for instance in systems involving
thermal and fluid components where highly non-linear
material data makes model-based non-linear control
design hard, but where local linear models may nonethe-
less be available for control purposes.

Niemann and Stoustrup (1999) provided a frame-
work for gain scheduling control based on the Youla-
Jabr-Bongiorno-Kucera (YJBK) parameterization of
all stabilizing controllers (refer to e.g. Anderson (1998)
and the references therein). Bendtsen et al. (2003)
elaborated upon this idea by demonstrating how to
switch between different nominal controllers in a con-
tinuous gain scheduling scheme once a new operating
point has been reached.

In this paper we will go into greater detail with the
work done by Bendtsen et al. (2003). We employ the
YJBK theory to change from one controller designed
in one operating point to another controller designed
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in a different operating point of a non-linear system.
We shall exploit some specific properties of the state
space implementation of the YJBK parameterization
to transfer not only parameters but also state informa-
tion from one controller to another, thus achieving
bumpless transfer.
It is noted that, in some previous approaches such as

Graebe and Ahlén (1996), bumpless transfer is achieved
by introducing a feedback that continuously forces the
output of the ‘next’ controller to stay close to the
actual controller output. In the present approach, a
similar structure is introduced based on the YJBK
parameterization, which allows for handling stability
in a more systematic way.
We also go into details with how to handle integrators

in this framework. Furthermore, it is explained how
integral quadratic constraints (Megretski and Rantzer
1997) can be used to analyse stability when some reason-
able assumption is made about how the plant behaves
in between the operating points. The gain scheduling
approach proposed in this paper is tested on a simple,
but highly non-linear model of a fossil fuel power
plant, validated against experimental data.
The outline of the paper is as follows. x 2 provides

an overview of the YJBK parameterization and control-
ler scheduling framework. In x 3 we present the main
contribution of this work, a novel approach to gain
scheduling with bumpless transfer, and discuss the
actual implementation of the gain scheduling control
method in detail. The control design is based on
observer-based state space formulations, and we show
how it is possible to design observer and feedback
gains independently of one another, i.e., that the
well-known separation principle of standard observer-
based output feedback control carries over to our
proposed controller structure. xx4 and 5 illustrate the
usage of the method on a simulation model of a fossil
fuel power plant and outline how to analyse stability
using integral quadratic constraints, respectively. Finally,
x 6 sums up the conclusions of the work.
Notation: The notation is mostly standard. We use

plain capital letters for systems described by standard
transfer functions

H ¼
A B

C D

" #

which should be understood as a system mapping an
input signal u 2 R

m to an output signal y 2 R
p with a

state space realization

_xx ¼ Axþ Bu

y ¼ CxþDu:

We use calligraphic letters to denote (block) two-port
systems, e.g.,

H ¼

A B B1

C D D12

C1 D21 D22

2
64

3
75

mapping two vector input signals to two vector output
signals.

RH1 is the set of all proper, stable, real rational
transfer functions. ? denotes the Redheffer star product,
i.e. interconnection of systems; note that if a two-port
system is connected with a one-port system, the star
product reduces to a linear fractional transformation
(Zhou et al. 1996).

A (block) two-port system can be reduced to a (block)
one-port system by selecting the proper input and
output channels or by interconnection with a zero
system, i.e.

I 0
� �

H
I
0

� �
¼ H ? 0 ¼

A B

C D

" #
¼ H:

2. Basic controller parameterisation

In this section, we provide a brief review of the frame-
work established in Niemann and Stoustrup (1999), on
which we base our controller synthesis. We note that
all results shown in both this and the next section can
easily be extended from continuous to discrete time
(Bendtsen et al. 2003).

Consider the system �GG depicted in the left part
of figure 1, and assume that it has the state space
realization

�GG ¼

A Bw Bu

Cv Dvw Dvu

Cy Dyw Dyu

2
64

3
75: ð1Þ

G

K

wv

�
y u

G

K

Q

wv

�
y u

�

� � �
�

�

�
�

Figure 1. Left: The interconnection of the system �GG and

the observer-based controller K. Right: K is implemented as

KðQÞ ¼ K ?Q.
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This system maps the input signals u 2 R
mu (controls)

and w 2 R
mw (disturbances, noise and command

signals) to the output signals y 2 R
py (measurements)

and v 2 R
pv (the signal to be controlled, which may

coincide with y). If the subsystem Gyu ¼ ½ 0 I � �GG
h 0
I

i
given by the matrices ðA,Bu,Cy,DyuÞ is stabilizable and

detectable, �GG can be stabilized by an observer-based
feedback controller mapping y to u of the form;

see e.g. Zhou (1996)

K ¼
Aþ BuF þ LCy þ LDyuF �L

F 0

" #
: ð2Þ

Furthermore, it is a simple matter to add integral action

to this controller if desired; the controller state is aug-

mented with a state that integrates the control error,

and a feedback gain can be designed for the augmented

state. The explicit state space formulae derived in the
sequel will be based on such controllers with integral

action. This is motivated from the general observation

that integral action is useful in a huge class of practical

applications.
Let Gyu ¼ CyðsI � AÞ�1Bu þDyu be written using

coprime factorization as

Gyu ¼ NM�1 ¼ ~MM�1 ~NN ð3Þ

with N,M, ~MM, ~NN 2 RH1. Further, let a number of

controllers for Gyu be given by

Ki ¼ UiV
�1
i ¼ ~VV�1

i
~UUi, i ¼ 0, . . . , � ð4Þ

where Ui,Vi, ~UUi, ~VVi 2 RH1. These coprime factoriza-

tions can be chosen to satisfy the double Bezout identity

~VVi � ~UUi

� ~NN ~MM

" #
M Ui

N Vi

� �
¼

M Ui

N Vi

� �
~VVi � ~UUi

~NN ~MM

" #

¼
I 0

0 I

� �

for i ¼ 0, . . . , �. All stabilizing controllers for Gyu based

on any particular stabilising, nominal K0 can now be

written according to the YJBK parameterization

KðQÞ ¼ K ?Q ¼ K0 þ ~VV�1
0 QðI þ V�1

0 NQÞ
�1V�1

0 ,

Q 2 RH1 ð5Þ

i.e., the linear fractional transformation setup depicted
in the right part of figure 1, which, due to the Bezout

identity, also can be implemented as in figure 2.

We then have the following result, adapted from

Zhou et al. (1996).

Lemma 1: Let a number of stabilizing controllers (4)

be given for a system (3). Then Ki, i ¼ 0, . . . , � can be

implemented as KðQiÞ ¼ K ?Qi, with Qi 2 RH1 given by

Qi ¼ ~UUiV0 � ~VViU0 ¼ ~VViðKi � K0ÞV0:

Proof: Follows by inserting Qi ¼ ~VViðKi � K0ÞV0 in (5),

rewriting the expression as

KðQiÞ ¼ K0 þ ~VV�1
0

~VViðI þ ðKi � K0ÞN ~VViÞ
�1
ðKi � K0Þ

and using the Bezout identity to show that

I þ ðKi � K0ÞN ~VVi ¼ ~VV�1
0

~VVi. œ
Lemma 1 states that it is possible to implement a

controller as a function of a stable parameter system

Q based on another stabilizing controller, as depicted

in the right part of figure 1. As stated in Niemann and

Stoustrup (1999) this implies that it is possible to

change between two controllers online, say, from a

nominal controller K0 to another controller Ki, in a

smooth fashion without losing stability by scaling the

Qi parameter by a factor � 2 ½0; 1�.
Furthermore, as pointed out in Niemann and

Stoustrup (1999) it is not only possible to change from

K0 to Ki, but indeed from any Ki to any Kj , i, j ¼

0, . . . , �. In this case, we may compute the parameter

Q as the following linear combination of the Qi’s given

in Lemma 1

Q ¼
X�
i¼0

�iQi,
X�
i¼0

�i ¼ 1, �i 2 ½0; 1�:

Then the resulting controller is given as

KðQÞ ¼
X�
i¼0

�i
~VVi

 !�1X�
i¼0

�i
~UUi: ð6Þ

G

Ũ0 Ṽ −1
0

Q

M̃ Ñ

wv

�

�

y u

�
�

�

� �
�

��

�
�

−

Figure 2. The controller is composed of coprime factoriza-

tions of the controller and system.
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This controller stabilizes the system depicted in figure 1,
giving rise to a closed loop transfer function Tvw from
w to v given by

Tvw ¼ Gvw þ GvuM
X�
i¼0

�i
~UUi

 !
Gvw ð7Þ

where Gvw,Gvu and Gyw represent the transfer functions
of the subsystems of (1) from w to v, u to v, and w to y,
respectively. Note that stability is guaranteed for all
linear combinations of the form (6). In fact, the linear
combinations do not even have to be convex; again,
see Niemann and Stoustrup (1999) for details.

3. State space controller parameterization

The controller implementation proposed in equation (6),
has one weakness, however; if controllers have been
designed in many operating points, the order of the
controller K(Q) may become prohibitively large. If
there are �þ 1 controllers in �þ 1 operating points, all
of order n, the order of K(Q) would typically be
2ð�þ 1Þn, due to the parallel couplings of the Qi

parameter systems. Even with the relatively low-order
parameterization suggested in the following section,
the order would still be ð2�þ 1Þn if all � Q-systems
were to be run in parallel. Thus, it is clearly desirable
to devise a way to keep the number of Q’s low by switch-
ing to a new nominal controller, whenever the plant
state has reached a new operating point, and base
further gain scheduling on this new controller. In that
way, the order of K(Q) would be maintained at 3n at
all times, at the expense of having to replace K and Q
during operation.
This section presents the main contribution of this

work, a state space formulation of an observer-based
gain scheduled output feedback control law with the
desirable qualities outlined above with explicit formulae
for the systems comprising the controller. We show how
to include integral action in the controller and prove
that the observer can be designed independently of the
feedback and integral feedback gains. Furthermore, we
present a procedure for bumpless transfer between
such controllers that preserves controller state informa-
tion from one pair of controllers to the next.

3.1. Integrator factorization

Now assume we wish to construct a gain scheduled con-
troller like the one referred to above, which includes
integral action in order to remove any steady state
errors that might arise from unmodelled dynamics,
etc. In the following, we will assume without loss of

generality that Dyu ¼ 0; if this is not the case, the

effect of the direct feedthrough can be compensated
for by including a corresponding extra direct feed-

through in the controller. For convenience, we will
also assume that the system is square, i.e., that the
number of inputs is equal to the number of outputs

(if the number of outputs is greater than the number
of inputs, a state feedback design with integrators for

all outputs is not feasible in the first place; if the
number of inputs is greater than the number of outputs,

similar results can be obtained, but the formulae become
somewhat more complicated).

The integral action is included in the controller by

augmenting the system model by extra states defined
as the integrals of the control error e ¼ y� yref , which
corresponds to placing open-loop poles in s¼ 0.

However, we observe that both of the coprime factors
~UUi and ~VVi in (4) must be stable. This means that includ-

ing an integrator on either side of the summation points
in figure 2 will add a pole in s¼ 0, violating the condi-

tions for Lemma 1 to hold. However, by choosing
any scalar r > 0 we can factorize the integrator into

the following coprime factorization

1

s
¼

s

rsþ 1

� ��1
1

rsþ 1

� �
¼ ~VV�1

I
~UUI ð8Þ

yielding ~VVI , ~UUI 2 RH1.
A controller with control action composed of obser-

ver based feedback and integral action can now be
designed according to the usual separation principle

paradigm. The observer gain is designed for the
original system parameters, an (extended) feedback

gain is obtained for an extended system model including
the integrator, and the two actual feedback gain

matrices—state feedback and integral feedback—are
obtained by partitioning the extended feedback matrix

consistently with the extended state space model.

3.2. Finding the YJBK parameter

Next, we present how to find Q once a number of
stabilizing controllers have been found in individual
operating points. That is, we have designed feedback

and observer gains Fi,FIi and Li such that the matrices

Aþ BuFi Bu

FIiCy 0

� �

and Aþ LiCy are Hurwitz. The following calculations
should then be carried out for each pair of adjacent

operating points, between which gain scheduling
takes place.
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Figure 3 illustrates the interconnection of the control-

ler and the stable parameter system Q, whose output will

be scaled by the scheduling parameter �. Kð�QÞ is

formed as a linear fractional transformation of K and

Q scaled by �, i.e., Kð�QÞ ¼ K ? ð�QÞ ¼ K ? ð� ~KK ? K1Þ.
Let K, the augmented controller on which we base the

YJBK scheduling, be given as

K ¼

Aþ BuF0 þ L0Cy Bu �L0 Bu

0 0 FI0 rI

F0 I 0 I
Cy 0 �I 0

2
6664

3
7775 ð9Þ

where rI 2 R
p�p, r > 0 represents the integrator factor-

izations included for each measurement output channel,

as described in (8). The augmented state vector of this

system is denoted �0 ¼ ½xT0 xTI0�
T . K takes the signals e

(from the plant) and uq as inputs and yields the outputs

u, which is applied to the plant, and eq ¼ Cyx0 � e,
which is connected to Q. Note that, for � ¼ 0, the

resulting controller becomes

I 0
� �

K
I
0

� �
¼

Aþ BuF0 þ L0Cy Bu �L0

0 0 FI0

F0 I 0

2
4

3
5 ¼ K0

ð10Þ

which can be recognized as a standard observer-based

controller with integral action.
When � ¼ 1 we must have

KðQÞ ¼ K1 ¼

Aþ BuF1 þ L1Cy Bu �L1

0 0 FI1

F1 I 0

2
64

3
75:
ð11Þ

The augmented state vector of this system is denoted
�1 ¼ ½xT1 xTI1�

T .
As indicated in figure 3, we may now construct Q as

Q ¼ ~KK ? K1, where ~KK is chosen such that K ? ~KK is an
identity system. We propose

~KK ¼

A 0 L0 Bu

FI0Cy � rF0 �rI �FI0 rI

�F0 �I 0 I
Cy 0 �I 0

2
664

3
775 ð12Þ

with the augmented state vector ~�� ¼ ½ ~xxT ~xxTI �
T . If we set

� ¼ 1 in figure 3, we can calculate the transfer function
of the two upper blocks:

K? ~KK¼

AþBuF0þL0Cy Bu �BuF0 �Bu �L0 Bu

0 0 �rF0 �rI FI0 rI

L0Cy 0 A 0 �L0 Bu

�FI0Cy 0 FI0Cy�rF0 �rI FI0 rI

F0 I �F0 �I 0 I

�Cy 0 Cy 0 I 0

2
6666666664

3
7777777775
:

ð13Þ

This system can, indeed, be seen to be an identity
system, i.e., e1ðtÞ ¼ eðtÞ, uðtÞ ¼ u1ðtÞ, 8t � 0 and zero
initial conditions. This is obviously equivalent to the
plant being controlled by K1.

This particular implementation of the YJBK param-
eterization has the following surprising properties.

Theorem 1: Assume that the system given by (1) is con-
trolled by the controller Kð�QÞ ¼ K ? �ð ~KK ? K1Þ where K,
~KK, and K1 are given by (9), (12) and (11) respectively.
Then the poles of the resulting closed loop system are
identical to the eigenvalues of the matrices

Aþ BuF0 Bu

FI0Cy 0

� �
,

Aþ BuF1 Bu

FI1Cy 0

� �
,

Aþ L0Cy,Aþ L1Cy and �rI , for any �.

Proof: Combining (9), (12) and (11) with the system
equations

_xx ¼ Axþ Buu, e ¼ Cyx

yields a closed-loop equation for the system-controller
interconnection of the form _�� ¼ P� where � ¼

½xT �T0
~��T �T1 �

T
¼ ½xT xT0 xTI0 ~xxT0 ~xxTI xT1 xTI1�

T denotes
the collection of augmented state vectors of the
system, K, ~KK, and K1, respectively, and P is given in
equation (14).

K

K̃

K1

eu

�

eq uq

�

� �
�

�
u1 e1

Q

α

Figure 3. The construction of the controller Kð�QÞ ¼

K ? ð�QÞ ¼ K ? ð� ~KK ? K1Þ.
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We then apply the state transformation ��� ¼ ��, where
� is given as

� ¼

I 0 0 0 0 0 0
0 0 I 0 �I 0 I
0 0 0 0 �I 0 I
I �I 0 I 0 0 0
0 0 0 0 0 0 I
I �I 0 I 0 �I 0
I �I 0 0 0 0 0

2
666666664

3
777777775
:

This yields _������ ¼ �P��1 ��� ¼ �PP ���, where �PP is upper

block triangular with the block diagonal consisting of
the matrices

Aþ BuF0 Bu

FI0Cy 0

� �
, � rI ,

Aþ BuF1 Bu

FI1Cy 0

� �
,

Aþ L1Cy and Aþ L0Cy (in sequence from the upper left
to the lower right corner). Since a similarity transfor-

mation does not change the eigenvalues of the mapping
it is applied to, the claim follows immediately. œ

Remark 1: It is noted that the bottom block of the

transformed states, ���, represents the state estimation
error x� x0. Since Aþ L0Cy is a Hurwitz matrix, we

see that x0 converges to x, just as in the case of a
traditional, non-gain scheduled observer-based state
feedback controller.

Remark 2: Note also that the stability of the closed-
loop system does not depend on the value of �(t).
There are no requirements on the rate of change of �.
Thus, for a fixed system transfer function as above,
the parameterization allows for arbitrarily fast control-

ler scheduling or even discontinuities in �(t), as long
as the signal remains bounded. This is similar to results
stated in Hespanha and Morse (2002), which deals

with controller switching for a fixed system.

In the bumpless transfer algorithm presented

below, we shall use the above separation property by
means of the following properties of the controller
states.

Theorem 2: Let �0 and ~�� denote the state vectors of the
two systems given by (9) and (12), respectively. If, for

some time �tt, � ¼ 1 for t � �tt, then ~�� will converge to �0, i.e.,

���ðtÞ ¼ �0ðtÞ � ~��ðtÞ ! 0 for t ! 1 ð14Þ

at a rate governed by the eigenvalues of the matrix

Aþ BuF0 Bu

FI0Cy 0

� �

independently of e and u1.

Proof: For the sake of brevity, we define

J0 ¼
AþBuF0 þL0Cy Bu

0 0

� �
, ~JJ ¼

A 0
FI0Cy � rF0 �rI

� �

and (15) above. We set �¼ 1 and use the system equa-

tions (9) and (12) directly:

_������ ¼ J0�0 þ
�L0 Bu

FI0 rI

" #
e

uq

" #

� ~JJ ~�� �
L0 Bu

�FI0 rI

" #
eq

u1

" #

¼ J0�0 þ
�L0 Bu

FI0 rI

" #
e

�½FI0 I � ~�� þ u1

" #

� ~JJ ~�� �
L0 Bu

�FI0 rI

" #
�½Cy 0� �0 � e

u1

" #

¼ J0�0 �
BuF0 Bu

rF0 rI

" #
~��

� ~JJ ~�� �
L0Cy 0

�FI0Cy 0

" #
�0

¼

Aþ BuF0 Bu

FI0Cy 0

" #
ð�0 � ~��Þ œ

P ¼

A BuF0 Bu ��BuF0 ��Bu �BuF1 �Bu

�L0Cy Aþ BuF0 þ L0Cy Bu ��BuF0 ��Bu �BuF1 �Bu

FI0Cy 0 0 ��rF0 ��rI ��rF1 �rI
�L0Cy L0Cy 0 A 0 BuF1 Bu

FI0Cy �FI0Cy 0 FI0Cy � rF0 �rI rF1 rI
�L1Cy L1Cy 0 �L1Cy 0 Aþ BuF1 þ L1Cy Bu

FI1Cy �FI1Cy 0 FI1Cy 0 0 0

2
666666664

3
777777775
: ð15Þ
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Proposition 1: Let �0, ~��, and �1 denote the state
vectors of the three systems given by (9), (12), and (11),
respectively. If ��� ¼ �0 � ~�� ¼ 0 at some time instance t*,
the control signal uðt�Þ generated by the controller
Kð�Þ ¼ K ? ð� ~KK ? K1Þ is given by

uðt�Þ ¼ ð1� �Þ ½F0 I � �0 þ �½F1 I ��1:

Proof: The control law is calculated from the state
space forms

u ¼ ½F0 I ��0 þ uq

¼ ½F0 I ��0 � �½F0 I � ~�� þ �u1

¼ ½F0 I ��0 � �½F0 I � ~�� þ �½F1 I ��1

The claim then follows by letting ~�� ¼ �0 in this
expression. œ

The point of this proposition becomes clear in a situa-
tion where the scheduling variable � has been equal to
one for a while. Theorem 2 then shows that ~�� converges
to �0 (even in the presence of non-zero reference and/or
disturbance inputs), which implies that the control
signal transmitted to the plant then becomes equal to
the control signal generated by K1 in a smooth manner.

3.3. A bumpless transfer procedure

In x 3.2 a global linear model was intrinsically assumed
in order to establish the theoretical results. Their practi-
cal use is based on robustness properties of the results,
i.e. that stability etc. is preserved in an open neighbour-
hood of the system parameters. In this section, we will
present a practical procedure specifying how to update
parameters from one controller to the next for a
system with linearizations that depend on the operating
points.
In particular, we shall use the controller structure

from x 3.2 with the modification that the system param-
eters ðA,Bu,CyÞ are replaced by ðA0,Bu0,Cy0Þ (the
original system parameters, for which a controller K0

has been designed) in (9) and in (12), whereas the next
controller K1 will be based on the new system
parameters, such that ðA,Bu,CyÞ are replaced by
ðA1,Bu1,Cy1Þ in (11). The procedure is illustrated in
figure 4. A gain scheduling controller K01 allowing sche-
duling between K0 and K1 via the YJBK parameter Q01

is in use as long as the system operates between operat-
ing points ðA0,Bu0,Cy0Þ and ðA1,Bu1,Cy1Þ. When the
system reaches operating point ðA1,Bu1,Cy1Þ, the con-
trol law is replaced such that the controller K12 allowing
scheduling between K1 and K2 via the YJBK parameter
Q12 becomes active. Furthermore, it is possible to
achieve bumpless transfer, as explained below.

Procedure 1: Assume that the transfer has to take place
between time T0 and time T1, that the system parameters
have changed from ðA0,Bu0,Cy0Þ to ðA1,Bu1,Cy1Þ during
that time interval, and that the next controller in line is
also an integral observer-based controller with feedback
gains F2 and FI2 and observer gain L2 corresponding to
the system parameters ðA2,Bu2,Cy2Þ. Then �ð � Þ should
be chosen as a continuous function of time such that
�ðT0Þ ¼ 0 and �ðT1Þ ¼ 1, and such that �ðtÞ � 1 for
T1 � t" < t < T1. Here, t" should be chosen sufficiently
large for the controller states ~�� to converge to �0.

At time T1 the transfer is performed by the following
substitutions of parameters and states

ðA0,Bu0,Cy0Þ �! ðA1,Bu1,Cy1Þ

ðA1,Bu1,Cy1Þ �! ðA2,Bu2,Cy2Þ

ðF0,FI0,L0Þ �! ðF1,FI1,L1Þ

ðF1,FI1,L1Þ �! ðF2,FI2,L2Þ

�0 �! �1
~�� �! ~���

�1 �! ��1

and �ðT1þÞ is reset to 0. ~��� and ��1 are steady-state values
of the states of Q assuming a constant input from the new
controller with index 0.

t

(A,B,C)

(A,B,C)

(A,B ,C )

t
T

y

1

0
T

K(αQ)

K(αQ)

Operating point

α

Figure 4. Illustration of the proposed scheduling algorithm.

Controllers K0,K1 and K2 are designed for operating points

ðA0,Bu0,Cy0Þ, ðA1,Bu1,Cy1Þ and ðA2,Bu2,Cy2Þ, respectively.

A gain scheduling controller K01 allowing scheduling between

K0 and K1 via the YJBK parameter Q01 is in use as long as the

system operates between operating points ðA0,Bu0,Cy0Þ and

ðA1,Bu1,Cy1Þ (the dark area in the top plot). When the system

reaches operating point ðA1,Bu1,Cy1Þ, the control law is

replaced at t ¼ T1, such that the controller K12 allowing sche-

duling between K1 and K2 via the YJBK parameter Q12

becomes active (the light area in the top plot). The bottom

plot shows the evolution of the scheduling parameter �. � is

reset to 0 at the switching time T1.
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Under the assumptions above, Procedure 1 will guaran-
tee bumpless transfer to the new controller at t ¼ T1.

The intuition behind the procedure is that the state
convergence property ( ~�� ! �0) shown in Theorem 2 is
exploited together with Proposition 1 to guarantee

u ¼ ½F1 I ��1 ð16Þ

at t ¼ T1�. Now, replacing �0 by �1, F0 by F1 and
resetting � to zero, ensures that the control signal is
still given by (16) at t ¼ T1þ.
The new values of the states of Q, ~��� and ��1, are

steady-state values calculated assuming a constant

input e�q from the new controller with index 0 after the
switch. The reason for this choice of new states is to
avoid inducing unnecessary disturbances if � changes

from 0 quickly after the switch, in which case the
output from Q may not have settled yet. By choosing
steady-state values as initial values for the states of

Q, the effect of any undesired transients in Q are
suppressed.
As can be seen, the procedure requires advance

knowledge of the next operating point ðA1,Bu1,Cy1Þ in
line, which will be the case if the reference is known in

advance. If such advance knowledge is not available,
it is necessary to implement the YJBK parameter as a
combination of Q’s as in (6), where the Qi correspond
to the operating ‘above’ and ‘below’ the current one.
Finally, we note that it is advantageous to add the

steady-state control signal corresponding to the operat-
ing point in which the controller is designed, to the
output from the controller. This control signal should

be scaled according to the scheduling parameters
before being fed to the plant. That is, assume u�0 and
u�1 are the steady-state control signals required to main-
tain the undisturbed plant state in operating point 0 and

1, respectively. Then the actual control signal should
consist of the feedback control contribution described
in Proposition 1 plus a steady-state contribution u� ¼

ð1� �Þu�0 þ �u�1.

4. Power plant control simulation

Originally, the work presented in this paper was moti-

vated by electric power production control at fossil
fuel power plants. Power plant processes are complex,
of high order, highly non-linear, and noisy, which

implies the necessity for employing multivariable control
principles in order to obtain good stability and perfor-
mance (Mølbak 1999); they are thus precisely of the
type referred to in the introduction, where exact

model-based control is, at best, hard. Conventionally,
power plants have been operating for extended periods

of time in, or close to, steady state, and the transitions
from one operating point to another, when required,
are typically fairly slow. However, in the power genera-
tion industry, the current trend toward market deregula-
tion, coupled with increasing demands for maximization
of the efficiency of utilization of natural resources and
minimization of environmental impact, places greater
and greater focus on efficient plant-wide operation
and control systems. Load following, i.e., the ability of
the power plant to meet the power production demands
at all times without causing excessive material stress,
is becoming a major concern due to the growing com-
petition between power companies and other market
forces; see also Garduno-Ramirez and Lee (2001) and
the references therein.

Thus, with the increasing demand for load following
capability, the ability of the power plant to perform
stable and fast transitions between different operating
points is becoming more and more important, a task
that must be addressed by the control system. In
this section we will demonstrate the usefulness of the
proposed scheduling method on a simple simulation
model of a power plant.

Figure 5 illustrates how the considered power plant
works. Water is pumped from a feedwater tank through
a preheater (economizer) and then into the evaporator,
where the water evaporates, producing steam. The
temperature is further increased in the superheaters.
The superheated steam is then expanded through the
turbines, which drive a number of generators producing
electricity. After the turbines the steam is condensed into
water, which is led back to the feedwater tank.

Figure 6 illustrates the simplified model of the boiler
used here. The gas in the furnace and the steam in the
evaporator are lumped together into single average
states. Assuming that the mass flow of the flue gas
equals the mass flow of coal and air, just three state
variables are left: the temperature and density of the
steam, Ts and �s, along with the temperature of the

G

Boiler

Economizer

Superheaters

Evaporator

Coal from
coal mills

Condenser

Power grid

Turbine

Feedwater
tank

Pump

Figure 5. Fossil fuel power plant with once-through boiler.
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flue gas, Tg. The controlled inputs are the mass flow
of coal, _mmc, and the mass flow of the feed water, _mmf .

The air flow is governed by the mass flow of the coal.
The heat flux from the coal and air is modelled as

Qc ¼ _mmchc þ _mmaha,

where hc and ha are the specific enthalpies of the coal
and air, and _mma is the mass flow of air. The heat flux
of the flue gas is modelled as

Qg ¼ ð _mmc þ _mmaÞcgTg,

where cg is the specific heat capacity of the flue gas. This

gives the following time derivative of Tg

dTg

dt
¼

1

cgmg
ðQc �Qg �QwÞ, ð17Þ

where mg is the mass of the flue gas (and other byprod-

ucts) and Qw is the heat flux through the evaporator
wall, modelled as

Qw ¼ �wðTg � TsÞ þ �wðT
4
g � T4

s Þ:

Here, �w and �w are heat transfer coefficients of the wall.
The time derivative of Ts is modelled as

dTs

dt
¼

�sð@hs=@�sÞð _mms � _mmf Þ þ _mmf ðhf � hsÞ þQw

Cw þ V�sð@hs=@TsÞ
, ð18Þ

where hsðTs, �sÞ is the enthalpy of the steam, hf is the
enthalpy of the feed water, Cw is the heat capacity of
the wall, V is the volume of the evaporator, and _mms

the mass flow of steam out of the evaporator modelled
as (Lu and Hogg 2000)

_mms ¼ �v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP2 � P2

0Þ=Ts

q
,

where PðTs, �sÞ is the pressure of the steam, P0 is
the pressure in the tank, and �v is a flow coefficient.

The final time derivative needed is that of �s which is
simply given by

d�s
dt

¼
_mmf � _mms

V
: ð19Þ

By assuming

hc ¼ 25MJ=kg, ha ¼ 570 kJ=kg,

cg ¼ 1280 J=ðkgKÞ, mg ¼ 1677 kg,

�w ¼ 12 kW=K, �w ¼ 0:00068W=K4,

Cw ¼ 103MJ=K, V ¼ 28:3m3,

hf ¼ 1400 kJ=kg, P0 ¼ 6:2MPa,

and �v ¼ 0:00031 kgK1=2=ðsPaÞ to be constants we have
a third order dynamical model given by equations
(17), (18), and (19). With _mma calculated as a function
of _mmc the model has two control inputs, _mmc and _mmf .

The values of the constants were found by fitting the
model to measurement data from an actual 400MW
power plant. Figures 7 and 8 compare the responses of
the real plant to those of the simulation model under
different operating conditions (varying steam pressure).
The fitted model shows surprisingly good agreement
with the measurements, considering its simplicity. The
only significant discrepancy between the model and the
actual power plant behaviour appears to be the steam
temperature at high steam pressure, where the model
predicts too low temperature. Nonetheless, close inspec-
tion reveals that the transient behaviour is replicated
quite well.

The method presented in x 3 is now applied to the
simulation model of the power plant. The control objec-
tive is to maintain Ts at 700K while keeping P at a

Tg

Boiler room

T rs, s

Evaporator

�
Coal and air
ṁc, ṁa,Q c

Flue gas
ṁc, ṁa,Q g

�
Qw Feedwater

ṁf

�
Steam
P, ṁs

Figure 6. Simplified model of boiler.
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Figure 7. Comparison of model and measured data, low

pressure operating point.
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desired reference value using the control inputs _mmf

and _mmc. The operating point is determined according
to the desired steam pressure, Pref 2 ½112:5; 315� bar.
Three operating points are chosen: w1: Pref ¼ 315 bar,
w2: Pref ¼ 206 bar, and w3: Pref ¼ 112:5 bar. In each of
these three points a discrete-time linearized model of
the plant is obtained with a sampling period of 5 s and
a discrete time LQR/LQE controller with integral
action is designed for this model with emphasis on
disturbance rejection. The controllers are denoted K1,
K2, and K3. Now the three controllers are scheduled
according to Pref using the method presented in x 3.
This is done by finding the Q that schedules between
each controller pair, i.e., finding Qij and Kij such that
Kijð0Þ ¼ Ki and KijðQijÞ ¼ Kj , 1 	 i, j 	 3. Figure 9
shows the simulation going through the three operating
points. At the dotted lines the controller pairs are
switched. Initially K12ð0Þ is used. As Pref ramps to w2,
� is ramped from 0 to 1 making K12ð�Q12Þ go from K1

to K2. At the first dotted line a bumpless transition to
K23 is performed and � is set to 0. At the next dotted
line we switch to K32, and at the last line we switch to
K21. Before each transition � has been 1 for a while to
ensure the bumpless transfer. As can be seen, the trans-
fer is indeed completely bumpless and the performance
during the relatively fast ramping is good. If we simply
use the controller designed for w2 in the entire operating
range, the control loop performance is degraded in w1

and w3, as seen in figure 10. The steam temperature
control is seen to be tighter for the scheduled case
than for the unscheduled case in both operating
points, while the pressure control clearly shows different
behaviours in the two operating points for the unsched-
uled control. In w3 there is some undershoot and oscilla-
tory behaviour, whereas in w1 there is a clear overshoot.

The scheduled controller, on the other hand, yields the
same, slightly overdamped response in both operating
points.

5. Stability analysis

Once the gain scheduled control law has been designed,
we are faced with the question of whether the control
loop remains stable when the system state is not in the
vicinity of any of the operating points. A thorough
analysis of the stability of the closed loop obviously
requires an exact model of the system behaviour in
between the operating points—knowledge, which is
not assumed to be available in the design. Instead of
attempting to obtain such knowledge, we will assume
a specific parameter variation for the system between
the different operating points using the dual YJBK
parametrization. Assuming that such a parameter varia-
tion describes the system adequately well, it is possible
to analyse the stability of the closed loop between the
operating points using integral quadratic constraints in
a particularly simple manner.

Consider a feedback connection

v ¼ MðsÞw, w ¼ DðvÞ

where the uncertainty D is a bounded causal operator
mapping v 2 L

nv
1½0,1Þ to w 2 L

nw
1½0,1Þ and M is a

linear dynamical system of appropriate dimensions.
v and w are said to satisfy the integral quadratic con-

straint (IQC) defined by � if

ð1
�1

v̂vð j!Þ
ŵwð j!Þ

� ��
�ð j!Þ

v̂vð j!Þ
ŵwð j!Þ

� �
d! � 0 ð20Þ

in which ^ð � Þð � Þ denotes the Fourier transform of ð � Þ and� is
a (frequency-dependent) multiplier. An IQC can be used
to analyse stability of the closed-loop interconnection:

Theorem 3: (Megretski and Rantzer 1997): Let
MðsÞ 2 RH1 and let D be a bounded causal operator.
Suppose that

1. For every � 2 ½0, 1�, the interconnection of M and �D
is well-posed (i.e., I �M�D is causally invertible);

2. For every � 2 ½0, 1�, the IQC (20) defined by � is
satisfied by �D;

3. There exists some � > 0 such that

Mð j!Þ
I

� ��
�ð j!Þ

Mð j!Þ
I

� �
	 ��I , 8! 2 R ð21Þ

Then the interconnection of M and D is stable.
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ṁ
f

Time [s]Time [s]

Figure 8. Comparison of model and measured data, high

pressure operating point.
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In other words, if we can find a multiplier � satisfying
both (20) and (21) for all possible D, we can guarantee
stability of the feedback loop.
We will employ the method above to analyse the

stability of the gain scheduled control system when

moving between two given operating points. In order
to do so, it is necessary to have a model of the plant
behaviour between these operating points. So far we
have only assumed the availability of linear models in
the operating points.

To employ IQC analysis in our setting, we first
exploit the existence of a dual YJBK parametrization
to characterize all systems stabilised by the controller
K via a stable dual parameter system S, as indicated in
the left diagram in figure 11. Let G denote an augmented
system which, when interconnected with a zero map-
ping, yields the linearization G0 in operating point 0,
i.e., 0 ? G ¼ G0. Note that we have some freedom in
choosing the parts of G that are connected to S. In a
similar manner as when constructing Q in x 3.2, S is
now constructed in such a way that if S is interconnected
with G we obtain the linearization in operating point 1,
G1. This idea is illustrated in the middle diagram in
figure 11, where a scaling variable � 2 ½0 , 1�, which
represents the linearizations moving between the operat-
ing points, has been inserted between G and S. S is
constructed as an interconnection between G1 and a
system ~GG, which, when interconnected with G, yields an
identity system; that is,

~GG ? G ¼
0 I
I 0

� �
) S ? G ¼ G1 ? ~GG ? G ¼ G1:
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Figure 9. Simulation in the entire operating range. The controllers are switched at the vertical dotted lines. The figures show from

top to bottom: Scheduling weight, steam temperature reference (� � �) and simulated output (—), steam pressure reference (� � �)

and simulated output (—), and mass flows of coal (� � �) and feed water (– –).

3700 3750 3800 3850 3900
699

699.5

700

700.5

701

3700 3750 3800 3850 3900
110

112

114

116

118

120

6700 6750 6800 6850 6900
699

699.5

700

700.5

701

6700 6750 6800 6850 6900
300

305

310

315

320

T
s
[K

]

T
s
[K

]
P

[b
a
r]

P
[b

a
r]

Time[s] Time[s]

Figure 10. Simulation showing reference values (� � �) and

controlled outputs with (—) and without (– –) gain scheduling.

Top: steam temperature, bottom: steam pressure; left: low

pressure operating point (w3), right: high pressure operating

point (w1).

502 J. D. Bendtsen et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
A
a
l
b
o
r
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
0
:
3
2
 
1
0
 
J
u
l
y
 
2
0
1
0



Due to the observer-based structure of the control law
employed in the control design and the freedom we

have in choosing the parts of G connected to S, a surpris-

ingly simple choice of parametrization exists

G ¼ ~KK ð22Þ

~GG ¼ K ð23Þ

This choice of G and ~GG yields the closed loop depicted in

the right block diagram in figure 11. With this assump-
tion on the plant behaviour we can now find values of �
and � for which this interconnection is stable. The inter-

connection can easily be put into the IQC framework
with

M ¼
0 Q
S 0

� �
and D ¼

�I 0
0 �I

� �
, �,� 2 ½0 , 1�:

We can now view D as a constant or a time-varying
uncertainty, which will allow for different classes of

multipliers.
We illustrate the approach outlined above on the gain

scheduled control loop designed for the power plant
model presented in x 4. For the numerical analysis we

use the MatLab toolbox IQC-� (Kao et al. 2001),

which provides IQC multiplier classes for various
uncertainties.
The stability of the loop in figure 11 is analysed with

Q ¼ Qij ,S ¼ Sij for the four cases ði ¼ 1, j ¼ 2Þ,
ði ¼ 2, j ¼ 1Þ, ði ¼ 2, j ¼ 3Þ, and ði ¼ 3, j ¼ 2Þ, where

i, j indicate the operating points of the power plant

model. We check stability for constant (time invariant,
TI), arbitrarily fast varying (time varying, TV), and

slowly time varying (STV) values of the scalar gains

�,� 2 ½0; 1�. We do not assume any correlation between
the gains, such as � � �. For TI gains we can apply
frequency-dependent multipliers, but in this case it was
simpler to guarantee stability for all four controllers
simply by dividing this interval into a small number of
overlapping intervals and assuring stability for TV
gains for each of these. For ði ¼ 1, j ¼ 2Þ and
ði ¼ 2, j ¼ 1Þ stability was guaranteed for TV gains in
the entire interval ½0 ; 1�.

For ði ¼ 2, j ¼ 3Þ (and ði ¼ 3, j ¼ 2Þ) it was necessary
to assume a bound on the rate of variation, i.e.
jd�=dtj, jd�=dtj < d. In general, bounds on the rate of
variation of the uncertainty allows for frequency-
dependent multipliers. Unfortunately, this makes the
IQC problem non-convex. In IQC-� this is circumvented
by pre-assigning multiplier poles, making the problem
convex but at the same time introducing conservatism.
By pre-assigning a single multiplier pole in s¼ sp we
could guarantee stability for the rate limits shown in
figure 12. With the least conservative choice of sp we
can guarantee stability for jd�=dtj, jd�=dtj < 0:11 corre-
sponding to a change between the two operating points
in only 10 seconds, which is much faster than required
for a power plant.

6. Discussion

A procedure for bumpless transfer has been proposed,
which, under assumptions of mild non-linearities, is
able to guarantee stability and to ensure that the entire
state of the new controller is aligned with the former
state. The stability is established by virtue of the
Youla-Jabr-Bongiorno-Kucera parameterization of all
stabilizing controllers (and its dual), which in the
particular implementation in the present paper
provides a novel and interesting separation principle.

S

G

K(α)

�

y u

�

G1

� G̃�

��

�

��

�

�

�

G
�

y u

K�

K̃
� K1

S

Q

�

�

�

α

α

b

b b

Figure 11. Left: The interconnection of all systems stabilized

by the controller K parametrized via a nominal system G and

a stable parameter S. Middle: The controller structure intro-

duced in x 3.2 is mirrored in the construction of S. �,� 2 ½0, 1�

are scheduling parameters. Right: The resulting closed loop

used in the stability analysis.
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Figure 12. Maximum rate limit as a function of the pre-

assigned multiplier pole.
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An interesting application of the bumpless transfer
scheme is for smooth phasing-in of a new control
system to supplement and/or replace an existing control
system at a large-scale plant, where down-time is expen-
sive and safety is important. That is, the gain scheduling
scheme could be implemented at the medium-to-high
level of the control hierarchy, where the computational
demands can be met easily, and ensure a smooth
transition to a new and (hopefully) better performing
closed-loop system.
Finally, even if a gain-scheduling control design

method with bumpless transfer is guaranteed to stabilize
a large model class, there is never any guarantee for
stabilization of the real plant. However, at least such a
design method should guarantee stability while schedul-
ing between controllers for a fixed linear model. This is
satisfied for the proposed method in contrast to several
of the classical methods. In addition, the method
updates the whole controller state vector, which the
authors consider to be a sound approach.
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