
Fault Isolability Conditions for Linear Systems with Additive
Faults

Jakob Stoustrup and Henrik Niemann

Abstract— In this paper, we shall show that an unlimited
number of additive single faults can be isolated under mild
conditions if a general isolation scheme is applied. Multiple
faults are also covered.

The approach is algebraic and is based on a set repre-
sentation of faults, where all faults within a set can occur
simultaneously, whereas faults belonging to different fault sets
appear disjoint in time. The proposed fault detection and
isolation (FDI) scheme consists of three steps. A fault detection
(FD) step is followed by a fault set isolation (FSI) step. Here
the fault set is isolated wherein the faults have occurred. The
last step is a fault isolation (FI) of the faults occurring in a
specific fault set, i.e. equivalent with the standard FI step.

I. INTRODUCTION

The ability to detect faults in safety critical systems by
model based approaches have received strong and increas-
ing attention recently. The number of sessions dedicated
to this research area in the major control conferences have
exploded during the past ten years and so has the research
funding from public and industrial funds.

Merely detecting a fault, however, is not enough for
systems which can not simply be shut down at the first
suspicion of a fault. In order to obtain fault tolerance, it is
required that the faults are also isolated, i.e. that their origin
in the dynamical system is determined, such that the proper
counter-measures can be taken.

To that end, it is interesting to observe that one of
the most popular approaches to fault isolation has serious
pitfalls. Indeed, the fault isolation problem has often been
formulated as the task of generating signals which are non-
zero in the presence of faults and zero otherwise. This is
a handy and simple way to isolate faults. Necessary and
sufficient conditions are known for the existence of filters
for this purpose. However, these conditions are restrictive,
e.g. in the sense that for this type of fault isolation, a
bounded number of faults depending on the number of
measurements can be isolated. In contrast, we shall show
in the sequel that an unlimited number of additive single
faults can be isolated under mild conditions if more general
isolation filters are applied.

The detection and fault isolation problem has been con-
sidered in a large number of papers and books, see e.g. the
books [1], [2], [3], [4], [6] and the references herein. The
described methods include both stochastic based methods as
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well as deterministic based methods. In the stochastic based
methods, different test methods as e.g. a CUSUM or a GLR
test are applied for detecting changes in the residual signals
as an indication of faults in the system. The deterministic
method are based on decoupling of disturbances in the
residual signals by using different algebraic and geometric
solutions. However, in practice, the two approaches are
combined to give effective methods for fault detection and
isolation.

The results presented in this paper are extensions of the
FDI results given in [6], [7]. In [6], conditions are given for
detection and isolation based on fault sets. The link to detect
faults in a specific fault set was not considered in [6]. By
doing this, it will be possible to isolate an unlimited number
of faults, as long as the number of faults in the single fault
sets satisfies some specified bounds.

II. SYSTEM SETUP

Consider the following state space description for a plant
or a system given by

Σ :

⎧⎪⎪⎨
⎪⎪⎩

σx = Ax + ∑m
j=1 E jd j + ∑k

i=1 Li fi

= Ax + Ed + L f f
y = Cx + ∑m

j=1 Dd, jd j + ∑k
i=1 D f ,i fi

= Cx + Ddd + D f f ,

(1)

where σ is an operator indicating the time derivation d
dt

for continuous-time systems and a forward unit time shift
for discrete-time systems. Also, x ∈ Rn is the state vector,
d ∈ Rm is a disturbance signal vector, and y ∈ R p is the
measurement vector. Furthermore, fi signifies the i-th fault
for each i = 1,2, . . . ,k. The coefficient matrices Li and
D f ,i are referred to in the literature as failure signatures
associated with the i-th fault, while fi itself is called the i-th
fault signal and f ∈Rk the fault vector. Further, we will also
use the short notation fi for the fault vector with all elements
equal to zero except for the i’th position where it is equal to
fi. It is always clear from the context which interpretation
we are using. The above system can be rewritten in a
transfer function form as

Σ :
{

y = Gydd + Gy f f (2)

where, with some abuse of notation, we use the same sym-
bols for the original signals and their Laplace transforms.

In modeling a given plant by the system (1), we as-
sume that all the fault signals fi, i = 1,2, . . . ,k, are quite
arbitrary and that no information is known regarding their
characteristics. That is, none of the signals i = 1,2, . . . ,k,
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are constrained to belong to any special class of functions.
We now proceed to formulate certain fault detection and
isolation problems.

Let the residual signal/vector r be given by

r = Fy = Gr f f + Grdd = Ψ(d, f ) (3)

r is a time function that takes values in Rq, F is linear
stable residual generator.

Before we continue, some certain fault modeling aspects
are considered. In a given situation, there exists always
a number of possible faults. Some of these individual
faults might occur simultaneously at any given time and
others cannot. The tasks of fault detection and isolation
depend on which faults can occur simultaneously and which
cannot. Based on the information available as to what faults
could occur simultaneously at any time and what cannot,
one divides the set of all possible faults into mutually
exclusive and exhaustive sets. To do so, let us introduce
some notation. Let us denote the set of all possible faults
by k = {1,2, . . . ,k}. Based on the known information, let
k be partitioned into � mutually exclusive and exhaustive
sets, Ωi, i = 1,2, . . . , �. That is, let Ωi ∩Ω j = ∅ for i �= j,
and Ω1 ∪Ω2 ∪ ·· ·Ω� = k. Also, let ki denote the number
of elements in Ωi. This leads us to define the following
simultaneous occurrence property.

Simultaneous occurrence property: Only those
faults that belong to any single set among the
sets Ωi, i = 1,2, . . . , �, can occur simultaneously
at any given time. This implies that certain faults
belonging to a set, say Ωi, and others that belong
to another set, say Ω j with i �= j, cannot occur
simultaneously at any given time.

Two special and extreme cases of the general simultaneous
occurrence property are interesting and important. The
first extreme case where � = 1 is called simultaneous
occurrence property of type 1. The other extreme case
of simultaneous occurrence property corresponds to the
case when � = k, and is called simultaneous occurrence
property of type 2. In this case, each and every fault occurs
by itself, i.e. it never occurs simultaneously with any other
fault, and as such it is interesting and important. In the
following, we will use fΩi to describe the fault vector only
including the faults in the fault set Ωi. Further, f\Ωi

include
all faults except the faults in the fault set Ωi.

A. Problem Formulation

Only exact fault detection and isolation will be consid-
ered in this paper. It has been shown in [6], that if almost
fault detection and isolation is possible, it is also possible to
obtain exact fault detection and isolation. Thus, we do not
consider the case, where exact FDI (and consequently al-
most FDI) is not possible, for which norm based approaches
have been studied by several authors.

Problem 1: Consider the system Σ given by (2) under
the simultaneous occurrence property. The problem of exact
fault detection of a set of multiple faults f with signature

matrices Lf and D f is defined as the problem of finding,
if existent, a bounded-input-bounded-output stable residual
generator F whose output is a scalar residual signal r such
that

Ψ(d,0) = 0 for all disturbances d

Ψ(d, f ) �= 0 for all faults f �= 0

and for all disturbances d
The solvability condition for the above problem will in

general be quite restrictive. The reason is that the effect
from two or more faults on the residual signal r might
just happen to cancel against each other. However, from
a practical point of view, it will not be relevant to require
such strong condition in connection with fault detection.
Instead, generic fault detection, [6], can be considered. It is
assumed that the faults are independent in the sense, that
the fault signatures are independent. This means that(

Lf

D f

)

is left-invertible. Based on this, we have the following
problem for generic fault detection.

Problem 2: Consider the system Σ given by (2) under
the simultaneous occurrence property. The problem of exact
generic fault detection of a set of multiple faults f with
independent signature matrices L f and D f is defined as the
problem of finding, if existent, a bounded-input-bounded-
output stable residual generator F whose output is a scalar
residual signal r such that there exist a genericity matrix V
and such that

Ψ(d,0) = 0 for all disturbances d

Ψ(d, f ) �= 0 for all faults f such that V f �= 0

and for all disturbances d

where V is a square transfer matrix with k columns which
are all unequal to zero.

Problem 3: Consider the system Σ given by (2) under
the simultaneous occurrence property. The problem of exact
generic fault isolation for a set of faults f with signature
matrices Lf and D f is defined as the problem of finding,
if existent, a bounded-input-bounded-output stable residual
generator F whose output is a residual vector r such
that there exist a finite number of genericity matrices
V1, · · · ,Vs such that for any fault fi, i = 1, · · · ,k, there
exists a dedicated component ri of r and that the transfer
functions from d and f to ri has the following properties:

Ψ(d,0) = 0 for all disturbances d

Ψi(d, f ) = 0 for all disturbances d and for any fault f such
that Vj f �= 0 for all j = 1, · · · ,s, and such that fi is identical
to zero

Ψi(d, f ) �= 0 for all disturbances d and for any fault f
such that Vj f �= 0 for all j = 1, · · · ,s, and such that fi

is not identical to zero
Problem 4: Consider the system Σ given by (2) under
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the simultaneous occurrence property. The problem of exact
generic fault set isolation for a set of detectable faults
f with signature matrices L f and D f is defined as the
problem of finding, if existent, a bounded-input-bounded-
output stable residual generator F whose output is a residual
vector r such that there exist a finite number of gener-
icity matrices V1, · · · ,Vs such that for any set of faults
Ωα , α = 1, · · · , �, there exists a unique residual signature
dedicated of r and that the transfer functions from d
and the fault set Ωα to r has the following properties:

Ψ(d,0) = 0 for all disturbances d

Ψ(d, f ) ∈/ R\Ωα for all disturbances d and any fault f
such that Vj f �= 0 for all j = 1, · · · ,s, and such that fi

is identical to zero for all i ∈ Ωα

Ψ(d, f ) ∈ RΩα for all disturbances d and any fault f
such that Vj f �= 0 for all j = 1, · · · ,s, and such that fi

is unequal to zero for at least one i ∈ Ωα
where RΩα is the residual vector signature with respect to
the fault set Ωα .

In [6], generic classwise fault isolation has been intro-
duced. Generic fault set isolation is a special case of generic
classwise fault isolation.

Note that it is also possible to formulate Problem 3 more
directly by using either direct residual signals, i.e. or a non-
zero residual signal when faults in a specific fault set occur
and zero when other faults occur or inverse residual signals,
i.e. a zero residual signal when faults in a specific fault
occur and non-zero when other faults occur.

Further, we have the following assumption:
Assumption 2.1: It is assumed that there is more than

one measurement signal, i.e. p > 1.
If the system includes only a single measurement signal,

it will not be possible to perform the isolation by separation
in the residual vector. Then it will only be possible to obtain
fault isolation by a dynamical investigation of the residual
signal.

Assumption 2.2: It is assumed that the system Σ is stable.
This assumption causes without loss of generality pro-

vided that the pair (A,C) is detectable. If the system is
not stable, it is possible to rewrite the system by using an
observer into a stable system, see [6].

III. PRELIMINARY RESULTS

Some preliminary results based on the results given in
[6] are now given.

Theorem 3.1: Consider the system Σ in (1) under the
simultaneous occurrence property. The problem of exact
fault detection with signature matrices L f and D f is solvable
if and only if

norm rank
(

Gyd Gy fΩα

)
≥ norm rank(Gyd)+ ki

for i = 1, · · · , �
Theorem 3.2: Consider the system Σ in (1) under the

simultaneous occurrence property. The problem of exact

generic fault detection with signature matrices L f and D f

is solvable if and only if

norm rank
(

Gyd Gy fi

)
> norm rank(Gyd)

for i = 1, · · · ,k
Based on this result, we get directly the following result:
Corollary 3.3: Consider the system Σ in (1) under the

simultaneous occurrence property of type 1. The total
number of faults that can be isolated while solving exact
isolation is equal to

norm rank
(

Gyd Gy f
)
−norm rank(Gyd)

From this corollary, we have that the maximal number of
faults that can be isolated exactly is equal to the number of
measurement signals in the disturbance free case.

Theorem 3.4: Consider the system Σ in (1) under the
simultaneous occurrence property. The problem of exact
generic fault isolation for a set of faults f with signature
matrices L f and D f is solvable if and only if the following
condition is true: For any i = 1, · · · ,k with α such that
i ∈ Ωα , we have

norm rank
(

Gyd Gy fi Gy frest

)
>

norm rank
(

Gyd Gy frest

)
where frest is the subset of faults in Ωα excluding fi.

Theorem 3.5: Consider the system Σ in (1) under the
simultaneous occurrence property. The problem of exact
fault set isolation for a set of faults f with signature matrices
Lf and D f is solvable if and only if the following condition
is true: For any i, j = 1, · · · , �, i �= j, we have

norm rank
(

Gyd Gy fΩi j

)
>

norm rank
(

Gyd Gy fΩ j

)
where Gy fΩi j

is the subsystem with inputs fΩi and fΩ j and
output y of system (2)

IV. MAIN RESULTS

The introduction of faults sets in Section II is the basis
for the following fault isolation approach. It will result in
a three step FDI approach given by:

• Fault detection.
• Fault isolation of the fault set Ωi, i = 1, · · · , �.
• Fault isolation in the fault set Ωi, i = 1, · · · , �.

The first step is the standard fault detection step, where
faults are detected when they occur in the system. In the
second step, the fault set wherein the faults occurring in the
system belong to is identified. In the last step, the faults in
the specified fault set Ωi are isolated.

A. The Disturbance Free Case

In the disturbance free case, the general system in (1) or
(2) take the following form:

Σ :
{

y = Gy f f (4)
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First, let us consider the case of fault detection. The
design of a filter/residual generator with a transfer function
FFD must be done such that a detection of the additive faults
can be done directly by considering the residual vector rFD,
when it is possible. From Theorem 3.2, we have that it will
always be possible to obtain generic fault detection in the
disturbance free case. The residual signal rFD is given by

rFD = FFDGy f f (5)

The conditions for fault detection take then the following
well-known form:

• Fault detection

rFD = 0 for f = 0
rFD �= 0 for fi �= 0

The next step is to isolate faults in the system. Now the
design of a filter/residual generator with a transfer function
FFI must be done such that an isolation (separation) of
the additive faults can be done directly by considering the
residual vector rFI, when it is possible.

Let FFI be designed such that

FFIGy f = Gr f =
(

Ξ Ḡr f
)

(6)

where Ξ is stable diagonal matrix of dimension p× p, and
Ḡr f is a stable transfer matrix of suitable dimension. Note
that if Gy f is left invertible, we can obtain diagonalization
of Gy f by the design of FFI. Gy f is left invertible when
k ≤ p, i.e. the number of additive faults is smaller than or
equal to the number of measurement signals.

In the case where complete fault isolation is possible,
we have the following well-known conditions for fault
isolation, see e.g. [1], [3], [4], [6]:

• Complete fault isolation for k ≤ p

rFI = 0 for f = 0
rFI,i �= 0 for fi �= 0
rFI, j = 0 for fi �= 0, j �= i

As it can be seen from (6), it will not in the general
case be possible to obtain a complete diagonalization of
the transfer function Gr f from fault f to the residual vector
rFI. If it is impossible to diagonalize Gr f , it will not be
possible to obtain a complete fault separation in Gr f for
fault sets of simultaneous occurrence of property of type 1.

When complete fault isolation is not possible, fault iso-
lation in a fault set might be possible. This will depend on
the simultaneous occurrence property of the k faults. Let
the k faults be arranged into � > 1 fault sets. Fault isolation
in a fault set Ωi can then be derived in the same way as
shown above for complete fault isolation, if it is possible.

Before it is possible to isolate the faults in a specific
fault set Ωi, the fault set needs to be isolated. This problem
can be solved by using the result from the generic fault
detection problem considered in Theorem 3.2. The design
of a residual signal (or vector) for fault set isolation can be
done in the following way. Consider e.g. the fault set Ωi.
Let the residual signal rFSI,i for FSI be constructed such

that it is independent of the ki faults in the fault set Ωi and
depends on all other faults in f . FSI can then be done in
the following way (assuming that faults has been detected
in the system):

• Fault set isolation for Ωi

rFSI,Ωi = 0 for fΩi �= 0, f\Ωi
= 0

rFSI,Ωi �= 0 for fΩi = 0, f\Ωi
�= 0

Based on Theorem 3.2, it is possible to design a residual
generator FFSI that satisfy the above condition if, in general,
the number of measurement signals p is larger than the
number of fault signals ki in the fault set Ωi. As a result of
this, ki must satisfy ki ≤ p−1, i = 1, · · · , �.

For simplicity, let the fault vector f be arranged such that
the first k1 faults in f belong to the first fault set Ω1, the
next k2 faults belong to Ω2 etc. By doing this, the system
Σ given by (4) can now be written as:

Σ :

⎧⎪⎨
⎪⎩ y =

(
Gy f ,1 · · · Gy f ,�

)
⎛
⎜⎝

fΩ1
...

fΩ�

⎞
⎟⎠ (7)

Based on this partition of the system given in (7), the system
related with the Ωi is given by:

ΣΩi :
{

y = Gy f ,i fΩi (8)

This system include ki additive faults and has p > ki mea-
surement signals. It is therefore possible to design a residual
generator for ΣΩi given by (8) that result in complete fault
isolation. This mean that we can design a residual generator
FFI,i such that

rFI,Ωi = FFI,iGy f ,i fΩi = ΞΩi fΩi (9)

where ΞΩi is stable diagonal matrix of dimension ki × ki.
All together, fault isolation in fault sets will require

three different sets of residual generators. A single residual
generator FFD for fault detection, � residual generators
FFSI,Ωi for fault set isolation and also � residual generators
FFI,Ωi for fault isolation in the � fault sets. All together,
the detection and isolation scheme take then the following
form:

• Fault detection

rFD = 0 for f = 0
rFD �= 0 for f �= 0

• Fault set isolation for Ωi

rFSI,Ωi = 0 for fΩi �= 0, f\Ωi
= 0

rFSI,Ωi �= 0 for fΩi = 0, f\Ωi
�= 0

• Fault isolation in the fault set Ωi

rFI,Ωi,ξ = 0 for fΩi ,ξ = 0
rFI,Ωi,ξ �= 0 for fΩi ,ξ �= 0
rFI,Ωi,ζ = 0 for fΩi ,ξ �= 0, ζ �= ξ

for ξ ,ζ = 1, · · · ,ki.

Based on the above discussion and the described FDI
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scheme, we have the following result.

Theorem 4.1: Consider the disturbance free system Σ
given by (4) under the simultaneous occurrence property.
Then the problem of exact generic fault isolation with
signature matrices L f and D f is solvable if and only if the
following conditions are satisfied:

1) Fault set isolation

norm rank(Gy fΩi j
) > norm rank(Gy fΩ j

)

for i, j = 1, · · · , �, � > 1, i �= j

norm rank(Gy fΩ1
) = k ≤ p, f or � = 1

where Gy fΩi j
is the subsystem with inputs fΩi and fΩ j

and output y of system (4).
2) Fault isolation in a fault set

norm rank
(

Gy fξ GyΩi,rest

)
>

norm rank(Gy fΩi,rest
) for ξ = 1, · · · ,ki

where fΩi,rest is the subset of faults in Ωi excluding
fξ .

Proof: The proof of Theorem 4.1 follows immediately
from the proof of the next theorem which deals with the
general case.

This result show that it will in general be possible to
isolate an unlimited number of faults in the system as long
as the conditions in Theorem 4.1 are satisfied.

The fault isolation based on fault sets given above depend
strongly on the fault modeling of the fault sets. In the case
where the simultaneous occurrence property is not satisfied
for the fault modeling, the above FDI scheme will not give a
correct fault isolation. It is here important to point out that
it is possible to validate the fault set modeling. If faults
from different fault sets occur simultaneously, the fault set
isolation step in the above FDI scheme will not be able to
isolate a fault set. All residual signals rFSI,Ωi will be non-
zero indicating that the faults has not occurred in the fault
set Ωi, i = 1, · · · , �.

B. The General Case

Based on the result given by Theorem 4.1 for the dis-
turbance free case, it is simple to extend the result to the
general case. The general result then takes the following
form.

Theorem 4.2: Consider the general system Σ given by
(2) under the simultaneous occurrence property. Then the
problem of exact generic fault isolation with signature
matrices L f and D f is solvable if and only if the following
conditions are satisfied:

1) Fault set isolation

norm rank
(

Gyd Gy fΩi j

)
>

norm rank
(

Gyd Gy fΩ j

)
, for i, j = 1, · · · , �

� > 1, i �= j

norm rank
(

Gyd Gy fΩ1

)
−norm rank(Gyd) ≥ k for � = 1

where Gy fΩi j
is the subsystem with inputs fΩi and fΩ j

and output y of system (2).
2) Fault isolation in a fault set

norm rank
(

Gyd Gy fξ GyΩi,rest

)
>

norm rank
(

Gyd Gy fΩi,rest

)
for ξ = 1, · · · ,ki

where fΩi,rest is the subset of faults in Ωi excluding
fξ .

Proof: Theorem 4.2 consist of two parts, conditions
for isolating a fault set and condition for isolating faults
in a specific fault set. The first part is a special case of
the classwise fault isolation problem considered in [6]. Let
the fault classes be identical with the fault sets defined in
Section II. The condition for classwise fault isolation take
then the conditions given in part 1. Part 2 is equivalent with
generic fault isolation, now only with respect to a single
fault set.

In the case when it is not possible to obtain both
disturbance decoupling simultaneously with fault detection
and/or fault isolation, it is still possible to use the above
results. Assume that the conditions for generic fault set
detection and fault isolation are satisfied in the disturbance
free case, i.e. conditions in Theorem 4.1. It is then possible
to design a number of residual generators that will give
residual signals for fault detection, fault set isolation and
fault isolation in a fault set. Due to the fact that the system
does not satisfy the general conditions in Theorem 4.2, it is
not possible to get a decoupling of all disturbance signals
in the residual signals. This problem needs to be handled
by using statistical tests of the residual signals to detect
changes with respect to faults. Here, methods as CUSUM
or GLR tests, [1], [2], [5] can be applied with advantages.

C. A Special Case: Single Fault Occurrences

Based on the results given in Theorem 4.2, we have then
the following result.

Theorem 4.3: Consider the general system Σ given by (2)
under the simultaneous occurrence property of type 2. Then
the problem of exact generic fault isolation with signature
matrices L f and D f is solvable if and only if

norm rank
(

Gyd Gy fi j

)
= 2 + norm rank(Gyd)

for i, j = 1, · · · ,k, i �= j
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Fig. 1. The two outputs in response to three single faults

where Gy fi j is the subsystem with inputs fi and f j and
output y of system (2).

This result in Theorem 4.3 has been applied in connection
with fault signal estimation in [7].

V. EXAMPLE

In the following example we show that in the absence
of disturbances, three faults can be isolated using only two
measurements, following the filter bank idea below. In the
example, the filters will be designed, such that the output of
the ith residual generator is zero, if the ith fault occurs, and
the two other residual generators have non-zero outputs.

We consider a random system of the form (1) with:

A =

(
−3 1
1 −4

)
, E = 0 , Lf =

(
1 0 1
0 2 2

)
,

C =

(
1 0
3 1

)
, Dd = 0 , D f = 0

We assume that f1 occurs in the time interval [0− 50]s,
f2 occurs in the time interval [50−100]s, f3 occurs in the
time interval [100−150]s. Figure 1 shows a simulation of
such a fault scenario, where each fault signal is taken as
a white noise sequence. Also the control signal is chosen
as a white noise sequence. The latter choice might appear
rather bizarre, but is just made to show that also the effect
of the control signal can be decoupled from the residuals.
Note, that it is virtually impossible to distinguish the three
faults by visual inspection.

Define

Gy f =
(
Gy f1 Gy f2 Gy f3

)
= C (sI −A)−1 Lf + D f

A bank of three fault filters Fi, i = 1,2,3, is designed,
such that Fi is an annihilator to Gy fi , FiGy fi = 0. For two
outputs this gives the result:

Fi =
(
−Gy fi,2 Gy fi,1

)
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Fig. 2. Fault residuals for three single faults. The ith residual is seen to
be zero in the time window where the ith fault occurs

(which is actually unique up to scaling with a rational
function). The result of these three filters applied to the
simulation in Figure 1, is shown in Figure 2. It is clearly
seen, that the ith residual is zero in the time window where
the ith fault occurs, whereas the other two residuals remain
non-zero.

VI. CONCLUSION

In this paper, necessary and sufficient conditions for
fault isolability have been given for systems with single
or multiple additive faults.

The conditions show that isolation is possible if and only
if some simple rank conditions are satisfied.

It is interesting to note, however, that the generic condi-
tions are even simpler. Generically, an unlimited number of
single additive faults can be isolated in the disturbance free
case for any system having more than one output.

For systems with significant disturbances, the same result
holds generically, required that the number of outputs
exceeds the number of disturbances with more than one.
In that case, an unlimited number of single faults can,
generically, be isolated.
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