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Future space applications will require an increased level of operational autonomy. This
calls for declarative methods for spacecraft state estimation and control, so that the space-
craft engineer can focus on modeling the spacecraft rather than implementing all details of
the on-line system. Celebrated model based methods such as Kalman filtering techniques
and Model Predictive Control (MPC) rely on an on-line model of the system under control
that can be simulated in faster than real-time. This becomes a severe challenge when the
paradigm of modeling employed is that of hybrid systems where discrete and continuous
dynamics co-exists.

This paper describes the design and implementation of an efficient engine for simulation
of hybrid systems, specifically tailored for on-line applications. The simulation engine,
contrary to traditional simulations systems, does not rely on discretization of time, but
instead it works on a discretized state-space where the update of states is determined by a
projection of points in time where the trajectory enters a new region. With this approach
each state in the model is integrated separately, meaning that sparsity is exploited well. In
addition hybrid transitions are located conservatively, i.e. without the need to ever “roll
back” the simulation in time.

Nomenclature

Hybrid systems:
Q location index set
X continuous state-space
U continuous input-space
Y continuous output-space
E input/output event labels
F forcing functions on the continuous state-space
G continuous output map
T transition map

DEVS Specification:
X inputs
Y outputs
S internal states
δint(S) state mapping function, for internal events
δext : (e,S, x) state mapping function for external events
λ : S output mapping
ta : S the time advance
e duration since the last internal or external event
x set of inputs
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I. Introduction

In recent years strong attention has been put on so called Hybrid Systems, i.e. systems that are described
by both continuous and discrete dynamics. It is the expressiveness of hybrid systems that makes them
interesting for modeling highly complex systems. As a simple example consider the power management
system of a satellite; The power generation from solar cells and the battery dynamics are well described
using continuous Ordinary Differential Equations (ODE), however, the loads may switch in or out due to
some logic dependent on the continuous state of the battery, hence discrete dynamics is coupled with the
continuous dynamics.

Previous research into hybrid systems theory has focused on hybrid modeling, simulation and verification,
see e.g.1 More recent research has started to focus on the application of hybrid systems for control and
estimation problems, e.g.2–4 In terms of autonomy the potential of hybrid systems used with model based
methods such as optimal nonlinear filtering and model predictive control is huge due to their expressiveness
and generality.

This paper describes the design and implementation of an efficient engine for simulation of models of
hybrid systems. The engine is specifically tailored for on-line applications. The simulation engine, contrary
to traditional simulations systems, does not rely on discretisation of time, but rather it works on a discretized
state-space where the update of states is determined by a projection of points in time where the trajectory
enters a new region. This approach, called Quantized State Systems (QSS), was introduced in the paper by
Kofmann.5 With this approach each state in the model is integrated separately meaning that sparsity is
exploited well, and it has been shown that this approach, for a given accuracy, is more efficient than traditional
time-discrete methods.6 The QSS approach can be implemented in the Discrete EVent Specification (DEVS),
due to,7 that specifies behavior of and interaction between atomic units communicating through message
exchange.

The simulation engine is part of a multidisciplinary software framework under development at Aalborg
University called SOPHY8 (Simulation, Observation and Planning in HYbrid systems), where it implements
key functionality in terms of hybrid simulation services for other components in the framework. The frame-
work is developed as a research vessel for declarative control techniques for hybrid systems, with intended
applications areas being spacecraft attitude control and formation flying.

The paper is structured as follows; At first definitions for hybrid systems are given, where after the
Discrete EVent Specification (DEVS) is presented, which is used in the simulation architecture. Hereafter
Quantised State Systems are presented as well as the mechanism for transition detection. This is followed
by a discussion of SOPHY which integrates the work presented in the previous sections. Then an example is
presented showing simulations of a simplified satellite power system. Finally the conclusions are given. The
ideas as presented all implemented in the Java language as part of the SOPHY framework.

II. Hybrid Systems

This section presents the formal view of hybrid systems that is followed in the SOPHY project and
continues to discuss the challenges associated with numerical integration of hybrid systems.

A. Definition of Hybrid Systems

Many different formal definitions of hybrid systems are available in the literature (see e.g.1, 3, 4). Within
SOPHY there exist an abstract definition on which further restrictions wrt. expressivity can be imposed for
specific classes of problems. This subsection first presents the abstract view and then continues to present
the set of limitations imposed to define Hybrid Deterministic Systems (HDS), which will be the subject of
this paper.

In the following Rn will denote the n-dimensional Euclidean space and Z+ will denote the smallest
inductive set, i.e. the positive integers. A hybrid system is an 8-tuple:

H = (Q, X, U, Y, E,F ,G, T ) (1)

Where:
Q = {q ∈ Z

+|1 ≤ q ≤ s}: is the set of location indexes with cardinal number s ∈ Z+

X = {{x|x ∈ Xq}q∈Q|Xq = Rnq}: is the continuous state-space with dimension nq∈Q ∈ Z+
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U = {{u|u ∈ Uq}q∈Q|Uq = Rmq}: is the continuous input-space with dimension mq∈Q ∈ Z+

Y = {{y|y ∈ Yq}q∈Q|Yq = Roq}: is the continuous output-space with dimension oq∈Q ∈ Z+

E =
{

e|e ∈ 2Σ
}

: is the set of possible input/output event labels, where Σ is a set of labels

F : Q×X × U 7→ Ẋ: is the forcing functions on the continuous state-space
G : Q×X × U 7→ Y : is a continuous output map
T : Q×X × U × E 7→ Q×X × E: is a transition map

Remarks:

• Time is not explicitly given in the definition of the system, however, with no loss of generality the
modeler can include an extra state in the continuous map to represent time

• In most practical applications the dimensions of the state-, input-, and output-spaces will not change
with different q ∈ Q

• The map F , as defined above, allows Ordinary Differential Equations (ODE), but not e.g. differential
algebraic or partial differential equations

1. Hybrid Deterministic System

The above definition is abstract and contains little information about how the maps are to be implemented
in practice or how the initial state is defined. A Hybrid Deterministic System (HDS) imposes the following
restrictions on the above definition:

• The maps, F ,G, and T , must be deterministic functions of the state and input

• At any time the total state of the HDS is defined by the triple: S = (q ∈ Q, x ∈ Xq, u ∈ Uq)

• The initial state of a HDS is defined by: S0 = (q0 ∈ Q, x0 ∈ Xq0
, u0 ∈ Uq0

)

• If the total state is indexed with q ∈ Q, e.g. Sq, it means that the location is fixed, thus: Sq = Xq×Uq

To define a HDS the initial total state must be included in the definition, further to make specification
of the HDS more convenient the maps F and G will be defines as sets of functions with index q ∈ Q and the
transition map will be broken up into a set of different maps:

HHDS = (Q, X, U, Y, E,F ,G, T ,So) (2)

where:
Q, X, U, Y, E: are defined as before

F =
{

{fq}q∈Q |{q} ×Xq × Uq 7→ Ẋq

}

: is the set of forcing functions on the continuous state-space

G =
{

{gq}q∈Q |{q} ×Xq × UQ 7→ Yq

}

: is the set of continuous output maps

T =
{

{tr}r∈{1,..,p} |Q×X × U × E 7→ Q×X × E
}

: are transition maps indexed from 1 to p

Where each transition is described as a 4-tuple:

τr =
(

j(Sq), r(Sq), ein ∈ 2Σ, eout ∈ 2Σ
)

(3)

where:
j(Sq) : Sq 7→ {true, false}: is the transition domain which triggers the transition when true
r(Sq) : Sq 7→ Q×X : is an algebraic reset equation of the state
ein: is an input event that causes the transition to trigger
eout: is an output event that is emitted when the transition is taken

In this definition the use of the location indexed state Sq rather than S makes it convenient to group
transitions, τr, according to source location. For purposes of implementation the transition domain must be
specified as a number of logical combined inequalities, example:

j(Sq) = j1(Sq) > 0 ∧ (j2(Sq) > 0 ∨ j3(Sq) > 0) (4)
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B. Simulating Hybrid Systems

In each location the system must be simulated according to the ODE describing the dynamics until the state
enters a transition domain. At this point a discrete jump is made to another location and the integration
continues from there after reinitialization of the state-space. The challenges associated with this kind of
integration of hybrid systems have been reported in9 and.3

The major problem to solve when the hybrid trajectory evolves within one location is that of detecting
when the transition functions, j(Sq), becomes true, i.e. signals that a discrete location jump must be
executed.

1. State Event Detection

When integrating the ODE embedded at the current location, two types of events can occur; External
events (also known as time events3) occur if e.g. an input variable changes value discretely. This can be
accommodated by standard ODE solvers by making sure that a update is performed on the time of the
event.

Another type of events are state events.3 This type of event occurs when one of the transition equations
becomes true. The solver will not know when this happens a priori. Therefore the solver must check for sign
changes in all the transition equations after each update step to identify if a discrete location jump is to be
made. However, this must be done consistently and the event must be located precisely in time. Consider
Figure (1).
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Figure 1. Trajectories of integration - missed transition detection

On the figure the dashed line indicates the transition domain and the full line is the state-space trajectory.
The dots indicate where evaluations of fq(x, u) is made as part of the time discrete numerical integration.
In this example a sign change of the transition equation will not be detected and the system evolves along
a qualitatively wrong trajectory. Depending on the system type, this can prove quite fatal, especially if the
system exhibits bifurcation or limit-cycle behavior.

It is therefore a fundamental requirement that a numerical integration algorithm for hybrid systems can
provide a guarantee that transitions are always detected and taken.

2. Previous Work

Various extensions to standard ODE solvers have been considered to better handle the integration of hybrid
systems. As stated above timed events can be handled by making sure that the integration performs an
update at the exact time of the event.3 State events have been accommodated by either choosing an artificial
small step-size by the ODE solver or using so-called discontinuity locking.3 The first approach leads to a very
slow integration process not in line with the requirements of on-line simulation applications. In the latter
approach the ODE is solved normally until a transition equation changes sign. At this point the standard
integration stops and methods are employed to locate the transition within the last integration interval, e.g.
using a bi-section algorithm10 or finding roots of the transition equations.11

The latter approach is also called roll-back, because time will have to be rolled back to the time where the
event occurs.12 Compared to the method of artificial small step-sizes these methods are more efficient, but
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they still can fail to detect events in scenarios like Figure (1) and there is still significant overhead whenever
an event must be located.

In12 the idea of looking at the step-size as a variable to be controlled via feedback was introduced
as an extension to a linear multi step method for integrating ODEs and guarantees that the integration
asymptotically approaches the transition without ever crossing it.

A method that guarantees not to cross over the transition domain during integration is called conservative,
compared to the roll-back methods which are denoted as positive.12

In13 extensive root-finding techniques were employed as an add-on mechanism to existing time discrete
numerical integration algorithms with success, but at the expense of severely increasing the complexity of
the integration algorithms.

III. DEVS Modeling

The Discrete Event Specification (DEVS) was formalized by Bernard P. Zeigler14 as a language formal-
ism for Discrete Event Systems (DES). Traditional DES descriptions, which enumerates all possible system
configurations into a number of discrete states with associated transitions between. DEVS takes an alterna-
tive view and considers a number of units, called DEVS atomic models, that can implement very complex
processing but interacts with other components through discrete interactions exchanging one or more values.
DEVS has been applied for a wide range of modeling and simulations applications spanning from protocol
verification to neural nets, see15 for an overview.

1 1

22

3

DEVS Atomic

Figure 2. Atomic
model with ports

More specifically, a DEVS model consists of a number of atomic models that
accepts input events and generate output events. Each event is the communication
of one or more real variables, which are associated to either an input port or an
output port. Figure (2) depicts such a model with 3 input ports and 2 output ports.

These atomic models can be connected to form coupled models, which from the
outside acts as an atomic model, i.e. DEVS models remain closed under coupling.
The following will describe the specification of an atomic model and connections
between these.

The following paragraphs described first in more detail atomic models and there-
after how models are coupled. The next section will describe its use for integration
of hybrid systems.

A. Atomic DEVS Models

A general atomic DEVS model is specified as an 8-tuple:

M = (X ,Y,S , δint(S), δext(e,S, x), λ(e,S), ta(.)) (5)

where:
X : are the inputs. x ∈ X is a pair containing a port identifier and a value, i.e. x = (port ∈ Z+, value ∈ R)
Y: are the inputs. y ∈ Y is a pair containing a port identifier and a value, i.e. y = (port ∈ Z+, value ∈ R)
S: are the internal statesa

δint(S) : S → S′ is a state mapping function, for internal events
δext : (e,S, x)→ S′ is a state mapping function for external events
λ : S → Y is the output mapping
ta : S → R+ is the time advance function i.e. time to next internal event.
e: is the duration since the last internal or external event
x: is a set of inputs

The external event function, δext(), is called whenever the input to the model changes and the internal
event function, i.e. an output event is generated by a connected model. δint() is called whenever the time
advance function, ta(), becomes 0.

1. Mapping Atomic Models to Software

ait is up to the modeler to choose how S is represented
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DevsAtomic
# name : string
# lastTransition : double
# nextTransition : double
# numberInPorts : int
# numberOutPorts : int
+ deltaInt() : double
+ deltaExt(e : double, message : DevsMessage) : double
+ output(e : double) : DevsMessage
+ ta(e : double) : double

Figure 3. Most important fea-
tures of the DevsAtomic class

The specification of a DEVS Atomic model is captured in software as an
abstract base class that is derived by all software objects that want to
implement a DEVS Atomic Model. The most important attributes and
methods of this class are shown in Figure (3). Whenever the class is
inherited then the constructor in the new class defines initialization of
the new class.

The DevsMessage, referenced in the class diagram, facilitates exchange
of information between model components, i.e. it contains information
paired in (port, value) objects.

B. Coupled Models

Atomic models can be coupled as specified in a coupling specification. Consider Figure (4), which shows two
atomic models that are coupled. There are three model entities in the figure; a1 and a2 are internal atomic
models and c is the coupled model.

Coupled model: c

Atomic 1: a1

Atomic 2: a2

Figure 4. Coupled model

The coupling specification consists of three distinct sets with elements of the form ((m1, p), (m2, p)),
where m1/2 specifies a model component and p the associated port number. The three sets are:7

EIC external input coupling, with m1 ∈ {c} and m2 ∈ {a1, ..., an}.

EOC external output coupling coupling, with m1 ∈ {a1, ..., an} and m2 ∈ {c}.

IC internal coupling, with m1 ∈ {a1, ..., an} and m2 ∈ {a1, ..., an}.

Remark: Coupling is closed, hence a coupled model can itself be coupled with other atomic or coupled
models.

1. Mapping Coupled Models to Software

«extends DevsAtomic»
DevsCoordinator

+ DevsCoordinator(name : String, noInputs : int, noOutputs : int, noSystems : int)
+ addAtomic(system : DevsAtomic) : boolean
+ addConnection(from : DevsAtomic, fromPort : int, to : DevsAtomic, int : DevsPort) : boolean
+ addOutput(from : DevsAtomic, fromPort : int, toPort : int) : boolean
+ terminateConnection(from : DevsAtomic, fromPort : int)

Figure 5. The DevsCoordinator class

The coupling specification is implemented in the DevsCoordinator

class, which is shown in Figure (5) with its most important fea-
tures. The class inherits behavior from DevsAtomic and extends
its interface with functions for adding systems and connections to
the coupled model. Since the class inherits the DevsAtomic class
then itself can be added in other DevsCoordinator instantiations
forming a hierarchy of coupled models.

In order for the coupled model to handle its contained DevsAtomic models it implements the following
sketched procedure for advancing the states of the submodels, which forms the δint(·) function call of the
coordinator:

1. Form a set I of submodels with ta(.) equal to the least ta(.) of all submodels and advance time with
this value

2. Call δint(
.) for all components in I

3. Call λ(.) for all components in I

4. from the set of generated outputs generate sets of input messages according to the coupling specification.

5. For each component with pending input call δext(
.)

6. Repeat from 1

6 of 16

American Institute of Aeronautics and Astronautics



IV. Quantized State Systems and Transition Handling

Y

t

Figure 6. Idea of QSS integration

Typical numerical integration techniques are based on discretisation
of time. Recently a consistent alternative approach has been developed
which is based on discretisation of state values. This allows the inte-
gration process to be formulated as a discrete event process with the
events specified at the times where a state crosses into another interval
of the discretisation. The idea is sketched on Figure (6) where a continu-
ous trajectory is shown together with the corresponding Quantized State
Systems (QSS) trajectory. Note how the QSS trajectory is divided in
time intervals according to the quantization of the value axis in contrast
to traditional time discrete methods with constant time intervals. This
means that computing power is being focused at states that exhibit fast dynamics.

This method was originally developed by Bernard P. Zeigler and Herbert Praehofer7 and recently extended
by Ernesto Kofmann,16 who formalized the QSS and the QSS2 methods, which are first and second order
methods for numerical integration of ODEs, respectively. This section describe the general first order QSS
method for integration of Ordinary Differential Equations (ODE) after.16 Consider a time invariant ODE of
the formb:

ẋ(t) = f(x(t),u(t)) (6)

The QSS method substitutes x(t) with a related function q(t):

ẋ(t) = f(q(t),u(t)) (7)

where qn = b(xn)) with b(·) being a hysteretic mapping R→ Q. This hysteretic map imposes the following
limitations on qn(t); Given a set of real numbers Q = {Qi ∈ R|Qi < Qj ∀i < j} we define:16

qn(t) =



















Qm if t = t0

Qj+1 if xn(t) = Qj+1 ∧ qn(t−) = qj

Qj−1 if xn(t) = Qj−1 ∧ qn(t−) = qj

q(t−)otherwise

(8)

with:
Qm = Qj |Qj ≤ x(t0) < Qj+1 (9)

This means that each continuous state in Equation (6) is approximated by a piecewise constant trajectory
in Equation (7), which discretely changes its value exactly when the real state, xn, enters a new interval in
the set Q. The length of the interval: ∆Q = Qj−1 −Qj is called the quantum and can be set for each state
independently, such that it represents a meaningful change of the state.

A. ODE Simulation as a Discrete Event System

With the application of this hysteretic map then Equation (7) can be decoupled and simulated as indicated
in Figure (7).

f1

fn

M 1

M n

u

z

q_n

q_1

q

dx_1

dx_n

Figure 7. The structure for DEVS simulation

Here each function block, fn, represents a row being calculated in f(q(t),u(t)) and each model Mn

represents an integrator that produces a piecewise constant output consistent with Equation 8. Each block

bIf one wants to simulate a time depended ODE one can include an extra state representing time with no loss of generality

7 of 16

American Institute of Aeronautics and Astronautics



fn is only called when there is an output event of a variable qn on which the calculation of fn depends. This
helps to utilize sparsity in the system. No further details of the DEVS models of fn will be presented here -
it simply produces an new output when new inputs are received.

The following describes the operation of the models Mn in more detail; To simulate an ODE, δext is
called the corresponding state whenever there is a significant change in one of the input variables of the
DEVS system (this includes both q(t) and u(t)). δint will be called when there is a significant change in a
state as predicted by the ta(·) function and finally λ(·) will evaluated whenever an output is required.

Each state Sn, where the index refers to the DEVS model for the n’th continuous state of the ODE, is
considered a 4-tuple Sn = (xn, qn, dxn

, σn) with xn being the predicted state value, qn the last output of the
integrator, dxn, the derivative of xn, and σn being the time to next event.

1. Internal Event Model, δint(·)

Internal events causes the following to happen for Sn:

xn′ ← qn + sgn(dxn
)∆qn (10)

qn′ ← xn′ (11)

dxn
′ ← dxn

(12)

σn′ ←

{

∆qn

|dxn
| if dxn

6= 0

∞ if dxn
= 0

(13)

Both xn and qn is set to the new quantized value and the time until the next event is calculated. The
derivative dxn

is left unchanged.

2. External Event Model, δext(·)

The external event function is called whenever the input events are received On each event the following
takes place with e being the time since last internal event for the corresponding state. The new input value
(the derivative from fn) is denoted u and is received as part of the event.

xn′ ← xn + edxn
(14)

dxn
′ ← u (15)

qn′ ← qn (16)

σn′ ←











∆qn−(xn′−qn)
u if u > 0

∆qn+(xn′−qn)
|u| if u < 0

∞ if u = 0

(17)

Equation (14 performs) forward Euler integration of the state. And Equation (17) calculates the remain-
ing time in this quantized state.

3. Output Function, λ(·)

Whenever the output function is called it generates:

λn(sn, e) = qn (18)

4. Time Advance Function, ta(·)

Whenever the time advance function is called it generates:

tan(e) = σn − e (19)
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Coupled: Coupled:

Atomic:
Transitions

Functions Integrators
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u
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Figure 8. Transition handling in QSS/DEVS. Bold lines represent vector signals

B. Transition Handling in QSS/DEVS

In order to be able to integrate hybrid systems the QSS scheme for ODE integration is augmented with
a mechanism to detect and enact transitions. This setting is depicted in Figure (8), where all the static
functions fn and Mn are grouped within one coupled DEVS model and similar for the integrators.

The new ”Transitions” block internally integrates the state x from the input derivatives and predict
when the transitions become enabled. At these points it generates an event connected to the static functions
block, which causes it to load the dynamic equations for the new discrete location. At the same time the
reset equations are calculated and the new state is supplied to the integrators, which adopt the new values.

Transitions (r(Sq) in Equation (3) can be caused by two mechanisms; The transition can be caused by
an external event through the event channel e in which case the transition block promptly executes the
reconfiguration event. Alternatively the transitions can be caused by an autonomous state event. The
following paragraphs describes how the transition block calculates event times for autonomous transitions.

For this method we will require the transition equations to be linear. i.e. they can be written on the
form (with a = [a1 ... an] and b a scalar):

j(x(t)) : b + a · x(t) ≥ 0 (20)

Per se this seems rather restrictive, but a non-linear transition equation can in most cases be transformed
to a linear equation by removing the non-linearity and introducing it as an extra state equation in the ODE
of the current location.12

The transition block receives the state derivatives from the block of static functions. From these derivative
the transition block integrates the current state x(t). Now the transition equation is reformulated as:

j∗(λ) = j(x(t)) + λ · (aTẋ(t)) (21)

where t is fixed at this time instant and ẋ is the vector of state derivatives received from the block representing
static functions. By finding the root λ of this equation, it can be determined when the transition will become
enabled.

λ =
−j(x(t))

aTẋ(t)
(22)

If λ is negative then the transition will never occur (as seen from this point in time). This procedure is
repeated for all transitions τ relevant for the current location and the transition block sets its time advance
function to the least positive value achieved for λ.

If there are no integrator transitions before this time then the transition will be executed next, otherwise
the integration is performed where after the transition time calculations are iterated.

V. Simulation Architecture - SOPHY

The effort presented in this paper is part of an on-going effort called SOPHY for Simulation, Observation
and Planning in Hybrid Systems, which is a research project with the goals to:

• Allow XML descriptions of systems and interconnections of systems

9 of 16

American Institute of Aeronautics and Astronautics



• Provide a framework for distributed processing at component level

• Provide various node services generated from received XML specifications, e.g.:

– Simulation

– Observation, Kalman filtering

– Control, e.g. Model Predictive Control

• Allow research by basing core architectural components on exchangeable modules to play with different
ideas

The architecture has been described in8 and is implemented in Java. For a short review of the key
concepts consider Figure (9). On this figure a simulation task is distributed across a network consisting of
three computing nodes.

Figure 9. An example of SOPHY Deployment

Each node contains a HybridExecutor connected to the rest of the distributed simulation through an
IOManager. The IOManager is a network abstraction and can be implemented for various network types,
e.g. tcp/ip for desktop computers or CAN-bus for embedded systems.

One of the computing nodes contains the ComposerSwitchBoard which is responsible for distributing
models and routing information between models simulated at different nodes. Upon initialization the Com-

poserSwitchBoard transmits simulation models to the nodes as XML files based on a user supplied XML
description of the system which references the XML documents of the individual hybrid systems. The Hy-

bridExecutor receives the XML file and creates an appropriate simulation object from a number of possible
plug-ins. The ComposerSwitchBoard then starts the simulation by advancing the global clock and distribut-
ing information flow between the nodes.

The remainder of this paper will focus on the DevsSophy plug-in that allows simulation of hybrid systems
as described in the previous sections.

A. DevsSophy

DevsTools

HybridCore

DevsCore   

Figure 10. Package dia-
gram for DevsSophy

The main packages can be seen on the diagram on Figure (10). The DevsCore

package contains classes for DEVS simulation as described in Section (III), the
HybridCore package contains all the functionality described Section in (IV) and
finally DevsTools contains a class, XMLModelFactory, that translates XML de-
scriptions of hybrid systems into coupled DEVS models by parsing the files and
generating objects as required.

When translated a structure such as depicted in Figure (11) is created. The
black box contains the DEVS model parts that make up the model of the the hy-
brid system and the DevsRunner class is capable of executing the model as a stand
alone model. Alternatively a class, SophyRunner, integrates the simulation with the SOPHY architecture as
just described.
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HybridSystem

DevsRunner

DevsMessage

«extends DevsAtomic»
DevsCoordinator

«extends DevsAtomic»
HybridLocationControl

«extends DevsAtomic»
HybridMap

DevsContext

«extends DevsAtomic»
HybridIntegrator

1

n

Figure 11. Class structure for a Hybrid System instantiated from an XML file

B. External Input to A Running Simulation

DevsSophy allows externally supplied inputs to be read from a comma separated file and injected into the
inputs of the running simulation. This allows the use of data obtained from existing simulation environments
to be incorporated and/or it allows the simulation to be run with different input sets.

The mechanism is based on a DevsAtomic instantiation which schedules its δint(·) function at a constant
sample-rate and each time reads in data from a specified file and produce it as output that then is distributed
by the DevsCoordinator. This mechanism is used in the example in next section.

VI. Example Simulation - Simple Power System

As an example we will consider the simulation of a simplified power system for a satellite, see Figure
(12). The simulation will take an external input, obtained from a Simulink simulation, representing the
power input from solar panels from a slowly tumbling satellite in low Earth orbit.

Power Input

DevsSophySimulink

CSV file
Pin

Voltage

Capacity

Battery CSVReader

Figure 12. Simple example of a satellite power system

This power input is read into the DevsSophy environment as described in the last section by the De-

vsAtomic model CSVReader which communicates with the other DevsAtomic model which simulates the
continuous dynamics of the battery as well as the load power consumption - this model is described as a
hybrid model.

Nominal

Safe

Payload

C<LFull : M=1

C
>H

C
ri

ti
ca

l

C
<L

C
ri

ti
ca

l

C>HFull : M=0

Figure 13. Discrete loca-
tions and transitions for
the “battery” system

The battery model is depicted on Figure (13) and shows the three possible
hybrid locations of the model as well as the transitions between them. C denotes
the battery capacity state. A colon in the transition specification is followed by
the reset specification (r(Sq) in Equation (3)). The battery in the simulation is
of nominal capacity of 0.68Ah and nominal voltage of 24.8V . The three locations
are:

Nominal Here the satellite consumes 20W for platform systems. No payload
is turned on and the battery charges whenever possible.

Payload When the battery is fully charged the satellite starts payload oper-
ations requiring 100W of power. The satellite does not charge in this
location. The system returns to nominal at a specified capacity.

Safe Here the battery is close to depleted and only essential systems are on
demanding 10W . The battery charges whenever possible.
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In all locations the continuous state is the battery capacity C and the output
is the battery voltage V . These are specified as:

Ċ(t) =
1

3600 (M(t)Pin − Pload)

V (t)
(23)

V (t) = 18 + 10.6 · C(t) (24)

Here Pload is a constant in each location signifying the power consumption, as described above. M(t) is a
discrete state indicating if the system should attempt charging (in the Nominal or Safe location M(t) = 1,
M(t) = 0 otherwise). This state is controlled by the resets associated with the transitions. The following
XML snippet presents the specification of the hybrid system in the Nominal state:

<location>

<name>Nominal</name>

<diffequation state="M"> 0</diffequation>

<diffequation state="C"> (0.00027*(Mode*Pin-20))/V</diffequation>

<outputmap output="V"> 18+10.6*C </outputmap>

<transitions>

<transition>

<name> toPayload</name>

<domain>C &gt; HFull)</domain>

<reset>

<destination> Payload </destination>

<statereset state="M"> 0 </statereset>

</reset>

</transition>

<transition>

<name> toSafe</name>

<domain>C &lt; LCritical)</domain>

<reset>

<destination> Safe </destination>

</reset>

</transition>

</transitions>

</location>

For a full specification of the battery hybrid system in the XML format see appendix A and compare to
the definition of the Hybrid Deterministic System presented in Section (II).

A. Simulation Results

The results of the simulation of the simple power system is shown in Figure (14) for a simulation of 6000s.
The power input graph shows a varying input and a period of no input, which corresponds to eclipse. The
voltage graph shows the variation of the voltage throughout the simulation.

Due to the affine relationship between the voltage and capacity in the model then the capacity graph
is similar in form to the voltage graph. On the capacity graph the various transition limits are depicted
from the hybrid model, e.g. at around 1200s it can be seen how the system for a short while enters the
payload mode, before a depleted battery makes it return to nominal. The final graph shows the times where
the hybrid location changes during the simulation and corresponds to crossings of the capacity state with
transitions domains.

The simulation takes 1.8 seconds on a standard office computer and the quantum selected for simulation
of the capacity is 5mAh, i.e. ∆q as described in Section (IV).
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Figure 14. Results. UPPER-LEFT: Power input. UPPER-RIGHT: Battery Voltage. LOWER-LEFT: Battery
Capacity. LOWER-RIGHT: Location changes

VII. Conclusion

This paper has presented an approach towards dealing with hybrid systems on-line, with the goal to make
use of hybrid simulation as part of on-line control and estimation algorithms within the SOPHY framework.

To achieve consistent simulation of hybrid systems a number of ideas have been merged; A concise
mathematical description of hybrid systems, the idea of quantized state systems, and the Discrete EVent
Specification as a tool for discrete event simulation. The major contribution is the demonstration of auto-
matic translation from the model domain to an on-line simulation.

Future work will extend the SOPHY architecture with means to communicate in real time with external
processes, where after the architecture can be rolled out for control and estimation problems with the
simulation capabilities at its heart.

Appendix A: Example XML Specification

The following shows an example of a SOPHY XML file, which specifies the “Battery&logic” block of
the example. A number of documentation tags have been removed from the XML-code in order to conserve
space.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE SophySystem SYSTEM "SophySystem.dtd">

<SophySystem>

<name>Battery</name>

<constants>
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<constant symbol="HFull">0.68</constant>

<constant symbol="LFull">0.62</constant>

<constant symbol="HCritical">0.4</constant>

<constant symbol="LCritical">0.2</constant>

</constants>

<!-- ***************************************************************** -->

<states>

<state>Capacity</state>

<state>ChargeMode</state>

</states>

<inputs>

<input>Pin </input>

</inputs>

<outputs>

<output>V</output>

</outputs>

<locations>

<!-- ************************************************************* -->

<location>

<name>Nominal</name>

<diffequation state="M"> 0</diffequation>

<diffequation state="C"> (0.00027*(Mode*Pin-20))/V</diffequation>

<outputmap output="V"> 18+10.6*C </outputmap>

<transitions>

<transition>

<name> toPayload</name>

<domain>C &gt; HFull)</domain>

<reset>

<destination> Payload </destination>

<statereset state="M"> 0 </statereset>

</reset>

</transition>

<transition>

<name> toSafe</name>

<domain>C &lt; LCritical)</domain>

<reset>

<destination> Safe </destination>

</reset>

</transition>

</transitions>

</location>

<!-- ************************************************************* -->

<location>

<name>Payload</name>

<diffequation state="M"> 0</diffequation>

<diffequation state="C"> (0.00027*(Mode*Pin-100))/V</diffequation>

<outputmap output="V"> 18+10.6*C </outputmap>

<transitions>
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<transition>

<name> toNominal</name>

<domain>C &lt; LFull)</domain>

<reset>

<destination> Charge </destination>

<statereset state="M">1</statereset>

</reset>

</transition>

</transitions>

</location>

<!-- ************************************************************* -->

<location>

<name>Safe</name>

<diffequation state="M"> 0</diffequation>

<diffequation state="C"> (0.00027*(Mode*Pin-20))/V</diffequation>

<outputmap output="V"> 18+10.6*C </outputmap>

<transitions>

<transition>

<name> toNominal</name>

<domain>C &gt; HCritical)</domain>

<reset>

<destination> Nominal </destination>

</reset>

</transition>

</transitions>

</location>

</locations>

</SophySystem>
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