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Abstract
In order to improve Compact Disc Players playability regarding playing Compact
Discs with surface faults, like scratches and fingerprints etc, the attention has been
put on fault tolerant control schemes. Almost every of those methods are based
on fault detection. The standard approach is to use a pair of residuals generated
by Compact Disc Player. However, these residuals depend on the performance of
position servos in the Compact Disc Player. In other publications of the same
authors a pair of decoupled residuals is derived. However, the computation of
these alternative residuals has been based on iterative methods. In this paper an
algebraic solution is presented. The algebraic algorithm do only use two thirds
of the number of multiplication and additions as the iterative method uses per
iteration. Copyright c© 2006 IFAC.
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1. INTRODUCTION

Optical disc players have in the last couple of
decades been one of the preferred storage medias.
In the following a specific optical disc player will
be dealt with, it is the Compact Disc Players
(CD-Players). However, surface faults on the disc,
like scratches and fingerprints, can cause problems
retrieving the stored information from this faulty
disc. One reason for this problem is to be found
in the control loops positioning the Optical Pick-
up Unit (OPU). The OPU is used to retrieve the
information stored on the disc in a spiral shaped
track. The OPU works by emitting a laser beam,
and by following detecting the part of the laser
beam reflected by the disc. In order to receive the
correct reflections the OPU is positioned in two
directions. The laser beam is focused on the track,

meaning that the focus displacement ef is mini-
mized, and it is radially positioned at the track,
meaning that the radial displacement er is mini-
mized. These two displacements are illustrated in
Fig. 1. Two control servos are formed to minimize
these two displacements as much as possible. A
linear electro-magnetic actuator is used to posi-
tion the OPU in each of the two directions. The
OPU also generates four detector signals, (two fo-
cus detectors and two radial detectors), which de-
pend on focus and radial displacements. The CD-
Player is described more detailed in (Bouwhuis et
al. 1985).

A large number of different control strategies have
been applied in the design of these controllers,
some examples of different applied control strate-
gies are mentioned in the following. (Steinbuch et
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al. 1992) was the first example of a µ-controller
design to a CD-Player based on DK-iterations. An
example of an adaptive control design was (Draijer
et al. 1992) where a self-tuning controller was
suggested. In the following years a large number
of different control strategies has been applied to
the CD-Players.

These designs are designed with the purpose of
controlling Players playing CDs without surface
faults like scratches and fingerprints. The problem
with these surface faults is that during a fault the
displacement sensor information from the OPU
contains an additional faulty component due to
the surface faults. The sensor signals are used
by the servo controllers to position the OPU in
the focus and radial directions. This means that
if nothing is done in order to accommodate the
faults, the controllers will react on these fault
components and in the worst case force the OPU
out of tracking and/or focus.

The design of controllers which accommodates
the surface faults on the discs, have been more
limited, see (Philips 1994), (Andersen et al. 2001),
(Vidal Sánchez 2003) and (Odgaard 2004). All
these accommodation schemes are based on a de-
tection of the faults. The standard residual used
for the detection can easily be computed based
on the four detector signals from the OPU. A
focus residual can be computed by adding the two
focus detector signals, and a radial residual can be
computed by adding the two radial detector sig-
nals, (Bierhoff 1984). However, the focus residual
depends on the radial position of the OPU and
the radial residual depends on the focus position
of the OPU. This can result in a lowering of the
performance of the fault detection. In (Odgaard et
al. 2006) and (Odgaard 2004) a pair of decoupled
residuals are suggested, these residuals are given
by a model of the surface faults.

These decoupled residuals, as well as the dis-
placements are not directly measurable. The re-
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Figure 1. The focus displacement, ef, is the dis-
placement from the focus point of the laser
beam to the reflection layer of the disc, the
radial displacement, er, is the displacement
from the center of the laser beam to the
center of the track.

lation from these signals to the detector signals
can be represented by a non-linear multi-variable
static mapping. This means that the inverse of
this mapping is required in order compute resid-
uals and displacements. However, this mapping is
not globally invertible. The mappings can be ap-
proximated by second order separable splines, see
(Odgaard et al. 2006). Since the approximating
splines consist of second order polynomials it is
possible to derive an algebraic inverse map, if the
region of displacements and residuals are known.
Due to the mechanics of the CD-Player the change
in displacements and residuals is limited so much
that previous displacements and residuals can be
used to chose these polynomials. If the previous
point was near the edge of defined interval of the
given polynomial, it might end up in the defined
interval of the neighbor polynomials. This means
it is possible to compute the alternative decoupled
residuals by an algebraic method, instead of using
the iterative solution described in (Odgaard et
al. 2006) and (Odgaard 2004).

This paper presents an algebraic solution to the
inverse mapping of the combined optical and fault
model in CD-Players. The combined optical and
fault model is presented, which makes it possible
to derive the algebraic inverse of this model. The
algebraic inverse is subsequently tested with simu-
lations. An example of the improvement by using
the computed residual is showed by comparison
with the normally used threshold. Finally the pa-
per is concluded.

2. THE COMBINED OPTICAL AND FAULT
MODEL

The used optical model is presented in (Odgaard
et al. 2003). This model represents the relation
from focus and radial distances to the four detec-
tor signals, in cases of no surface faults. The model
is of the following structure

[

D1, D2, S1, S2

]

= f (ef, er) , (1)

where D1, D2 are the two focus detector signals,
S1, S2 are the two radial detector signals, and
f(·) is a vector function representing the optical
mapping (model). In (Odgaard et al. 2003) this
model is approximated by

[

D1, D2, S1, S2

]

= h (ef) · g (er) . (2)

Each of the functions in (2) can be approximated
by second order splines. By using spline approxi-
mations of the mappings the optical model can be
given by

D1 = h1(ef) · g1(er), (3)

D2 = h2(ef) · g2(er), (4)

S1 = h3(ef) · g3(er), (5)

S2 = h4(ef) · g4(er), (6)
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where hi and gi are the polynomial splines ap-
proximating the functions in the optical model,
(i ∈ {1, 2, 3, 4}). Two of these functions represent
the physical variable, these are g1(er) and g2(er),
see (Odgaard et al. 2003). This means that the
optical model can be simplified by

g1(er) = g2(er) (7)

All the functions can partly be approximated with
second or first order polynomials, and those forms
the splines.

2.1 Fault model

In (Odgaard et al. 2006) and (Odgaard 2004)
the surface faults are modeled as scalings of the
output of the optical model. The surface faults
can be modeled as scalings of the detector signals,
since a surface fault results in less received light
energy at the photo detectors. The fracture in the
disc surface will result in light being reflected in
other directions than the intended one.

It is the objective of the combined optical and
fault model to represent both responses of the de-
tector signals to displacements and surface faults.
This model is required to have an output in R4

(the four detector signals). Due to requirements of
invertiability the inputs is also in R4. Two of the
input signals are given as the two displacement
positions ef and er. This means that the fault
can be represented by only two parameters. In
(Odgaard et al. 2006) and (Odgaard 2004) these
parameters have been defined as being a scaling
of the two focus detector signals, βf, and a scaling
of the two radial detector signals, βr. A residual
is in (Chen and Patton 1999) defined as being
zero in case of no fault and one in case of a
fault. In (Odgaard 2004) these scalings, which
models the surface faults, where transformed into
two residuals. The focus residual is defined as
αf = 1 − βf, and the radial residual is defined
as αr = 1− βr. Combining these scalings with the
approximated optical model, given in (3-6), result
in the following combined model

D1 = (1 − αf) · h1(ef) · g1(er), (8)

D2 = (1 − αf) · h2(ef) · g2(er), (9)

S1 = (1 − αr) · h3(ef) · g3(er), (10)

S2 = (1 − αr) · h4(ef) · g4(er). (11)

The subsequent objective is to find a method for
computing the inverse of this mapping given that
ef and er are in a known region, (in order to chose
the correct second order polynomial splines).

3. COMPUTATION OF THE INVERSE MAP

In this section an algebraic inverse map of the
combined optical and fault model is derived. It is
assumed that the region of the two displacements

are known, these will be known if computation
of the inverses starts while the OPU is the nor-
mal operational range in both directions. I.e. the
correct polynomials can be chosen for the approx-
imation. The previously computed displacements
are used to choose the initial approximating poly-
nomial, since maximum displacement change from
sample to sample is limited.

The first step is to compute ef. If (8-9) are
combined with (7), equation (12) can be stated

D1

h1(ef)
=

D2

h2(ef)
⇒ (12)

D1 · h2(ef) − D2 · h1(ef) = 0, (13)

h1(ef) and h2(ef) can be approximated by second
order polynomial splines for the given intervals.
I.e. h1(ef) = h1,2 · e2

f +h1,1 · ef +h1,0, and h2(ef) =
h2,2 · e2

f + h2,1 · ef + h2,0. The solution to (13) is
subsequently given by

ef =
−(h′

2,1 − h′

1,1) +
√

Q

2 ·
(

h′

2,2 − h′

1,2

) , (14)

where

Q = (h′

2,1 − h′

1,1)
2 − 4 · (h′

2,2 − h′

1,2) · (h′

2,0 − h′

1,0),

(15)

h′

1 = D2 · h1 ∧ h′

2 = D1 · h2. (16)

This solution is only valid if h′

2,2 6= h′

1,2 ∨ Q ≥ 0.
This requirement is fulfilled by the practical setup,
and the resulting used polynomial splines. Only
the given solution of the second order equation
is possible, since the other solution is outside
the defined interval for the given approximating
polynomials.

The second step is to compute er based on (10-
11) and the computed value of ef. The following
equation can be stated.

S1

h3(ef) · g3(er)
=

S2

h4(ef) · g4(er)
⇒ (17)

S1 · h4(ef) · g4(er) − S2 · h3(ef) · g3(er) = 0. (18)

Second order polynomials are used for the approx-
imations meaning,

er =
−(g′4,1 − g′3,1) +

√
Q

2 · (g′4,2 − g′3,2)
, (19)

where

Q = (g′4,1 − g′3,1)
2 − 4 · (g′4,2 − g′3,2) · (g′4,0 − g′3,0),

(20)

g′3 = h3(ef) · S2 · g3 ∧ g′2 = h4(ef) · S1 · g2. (21)

The solution in (19) is only valid if g′4,2 6= g′3,2 ∨
Q ≥ 0. This requirement is fulfilled by the prac-
tical setup, and the resulting used polynomials.
Only the positive solution of the second order
equation is inside the defined interval of the given

 1011



approximating polynomial. In situations where
the wrong polynomials are chosen, the positive
solution is closest to the correct solution. This
can subsequently be used to chose the correct
approximating polynomial.

The two residuals αf and αr are subsequently
computed. After computing focus and radial dis-
placements, one ends up with four equations with
two variables, where two of the equations only
have one variable and the other two equations
depend on the second variable.

[

h1(ef) · g1(er)
h2(ef) · g1(er)

]

· αf =

[

D1

D2

]

, (22)

[

h3(ef) · g3(er)
h4(ef) · g4(er)

]

· αr =

[

S1

S2

]

. (23)

The solutions can be given by taking the mean of
each pair of equations. The mean is used since it
in practice have given the best results. These can
easily be computed by (24) and (25).

αf =
1

2
·
(

D1

h1(ef) · g1(er)
+

D2

h2(ef) · g1(er)

)

,

(24)

αr =
1

2
·
(

S1

h3(ef) · g3(er)
+

S2

h4(ef) · g4(er)

)

.

(25)

3.1 Handling change of approximating polynomial

It is clearly a problem if the computed displace-
ments are outside the defined region of their re-
lated polynomials. However, this can be handled
simply by changing the approximating polynomial
to the ones indicated by the computed displace-
ments. The displacements and residuals are fol-
lowing computed again by using the newly chosen
approximating polynomials. The change of poly-
nomials will only be relevant once, due to the lim-
ited displacement changes, since only a neighbor
to the initial used polynomial can be relevant.

3.2 The algorithm

The algebraic method for computing ef, er, αf, αr

is now found. The steps in the computation can
be listed as:

(1) Compute: ef =
−(h′

2,1
−h′

1,1
)+
√

Q

2·h′

2,2
−h′

1,2

,

where
Q = (h′

2,1−h′

1,1)
2−4·(h′

2,2−h′

1,2)·(h′

2,0−h′

1,0),
h′

1 = D2 · h1 ∧ h′

2 = D1 · h2.

(2) Compute: er =
−(g′

4,1
−g′

3,1
)+
√

Q

2·(g′

4,2
−g′

3,2
) ,

where
Q = (g′4,1−g′3,1)

2−4·(g′4,2−g′3,2)·(g′4,0−g′3,0),
g′3 = h3(ef) · S2 · g3 ∧ g′2 = h4(ef) · S1 · g2.

(3) If the computed values of ef and ef are inside
the defined intervals of the used approximat-
ing polynomials proceed to step 4, if not

change the approximating polynomials to the
neighbor polynomials which defined interval
contains the values of the computed displace-
ments, and jump back to step 1.

(4) Compute: αf = 1
2 ·

(

D1

h1(ef)·g1(er)
+ D2

h2(ef)·g1(er)

)

.

(5) Compute: αr = 1
2 ·

(

S1

h3(ef)·g3(er)
+ S2

h4(ef)·g4(er)

)

.

3.3 Computational complexity

The main reason to use this implementation of
the residual computation, instead of the itera-
tive implementation, is to limit the number of
required computations. All in all this algorithm
requires approximately 45 multiplications and 20
additions. In the rear cases where the result is not
in the definition set of the used polynomials these
numbers are doubled. The iterative implementa-
tion, on the other hand, requires approximately
60 multiplications and 40 additions per iteration.
Experiments with the iterative implementation
have shown that normally 2 iterations are used
and in rare case 3 iterations are used in order to
achieve a low enough approximation error. This
implies that the newly proposed implementation
is faster in terms of computations than iterative
algorithm.

4. SIMULATION OF AN EXAMPLE

In this section the algebraic method is tested by
comparing its output with the original focus and
radial displacements used for the simulation. The
used input signals (ef and er) to this simulation
are two sine signals with a small difference in the
frequency so that the two input signals are not
fully correlated. The frequency and amplitude of
these sine signals are chosen in a way that the
maximum variance value from one sample to an-
other is at least: 0.014µm, since it is the maximum
position movement from sample to sample, see
(Odgaard et al. 2006). The simulation is based
on a simulation without any faults, see the upper
figure in Fig. 2. This fault free signals is following
multiplied with signals representing the surface
fault in the four detector signals. The fault signal
is constructed using the model in (8-11), where
1 − α represents the surface faults, and the used
1 − α signal is illustrated in the middle figure in
Fig. 2. Using the fault model and the fault signal
in middle figure in Fig. 2, the simulation series
of samples with surface faults are computed and
illustrated in the lower figure in Fig. 2.

The algebraic solution algorithm is subsequently
applied to the signals illustrated in the lower
figure in Fig. 2. In Fig. 3, the computed focus
and radial displacements are compared with the
original ones. From the upper plot in Fig. 3 it
can be seen that the algebraic solution ends up
with small computation errors. These errors are
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Figure 2. The four simulated detector signals
without any faults, the fault, and the four
simulated detector signals with faults.
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Figure 3. The upper plot compares the original
focus and radial displacements with the ones
computed by using the algebraic inverse map
solver. The lower plot illustrates the com-
puted residuals,representing the surface fault
model. It can be seen that the error, intro-
duced by the approximating polynomials, re-
sults in a deviation in the computed residuals.

due to approximation errors of the approximating
polynomials. These errors can be neglected due to
their relatively small sizes.

The computed residuals can be seen in the lower
plot in Fig. 3. From this plot it can been seen
that the residuals are computed well. However,
some small deviations are present in the non-fault
areas of the signal. These deviations are again due
to errors in the approximating polynomials.

This means that except from errors in the approx-
imating polynomials, this method gives an alge-
braic alternative to iterative method of computing
the positions and fault parameters presented in
(Odgaard et al. 2006) and (Odgaard 2004). Notice
the iterative method for computing the inverse
does use the same approximations, i.e. the iter-
ative method cannot perform better than the al-
gebraic method. It might even give a less accurate
result, since the iterations might be stopped too
early.
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Figure 4. Measured detector signals
D1[n], D2[n], S1[n] and S2[n] while passing
the scratch.
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Figure 5. αf[n] plotted together with detection
signals based on both αf[n] (Detect 1) and
Sf[n] (Detect 2). The upper plot shows the
beginning detection of the scratch, and the
lower plot shows the end detection

4.1 An example of the improved fault detection by
the residual.

In subsection the improvements by using the com-
puted residuals is compared with the standard
used sums signals are illustrated. This is done by
comparing the two different residual on a sampled
scratch using a simple threshold. The original
scratch can be seen in Fig. 6. The thresholds for
the given signals are found such that they detect
as much of the fault as possible and without mak-
ing any false detections on the test data. These
thresholds are found by a trial and error method.
Fig. 4 which illustrates the scaled detector signals,
from which it is easy to do a visual detection of
the scratch. The real scratch is the part of the
signals where the values are decreased. It lasts
approximately from sample 230 to sample 670.
The ideal fault detection algorithm will end up
with these beginning and end detections of the
scratch which, however, is a hard requirement to
fulfill. Figs. 5 and 6 illustrates the beginning and
end of the scratch seen in Fig. 4. From Figs. 5 and
6 it can be seen that Sf[n], Sr[n], αr[n] and αr[n]
detect the fault well. The detections based on the
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Figure 6. αr[n] plotted together with detection
signals based on both αr[n] (Detect 1) and
Sr[n] (Detect 2). The upper plot shows the
beginning detection of the scratch, and the
lower plot shows the end detection.

four residuals are: the αs : n = [233 − 668], the
Ss : n = [239 − 665]. From these it can be seen
that fault detection based on the new decoupled
residuals αf[n] and αf[n] give a more clear detec-
tion than if the two other residuals were used,
since the background noise level is lower. The
new residuals have an improvement of 6 samples
in the beginning and 3 samples in the end. This
improvement seems less significant compared to
the duration of the scratch, which is 441 samples.
However, many practical experiments with fault
tolerant control in CD-players have shown that an
improvement of a few samples of the fault detec-
tion can result in a large controller performances
improvement. One should also note that the new
method for detection is very close to the fault
localization by the visual inspection.

5. CONCLUSIONS

This paper presents an algebraic method for com-
puting the decoupled residuals and positions of
the OPU in a CD-Player. These residuals have
previously been defined and computed using an
iterative method in (Odgaard et al. 2006) and
(Odgaard 2004). In this paper a new algebraic
method is derived, and tested. This test shows
that the algebraic method solves the problem find-
ing the positions and residuals well, with a small
error. This is due to errors in the approximating
polynomials used to represent the model of the
optical detectors in the CD-Player. Notice that
the iterative method uses the same approximating
polynomial splines, meaning that the algebraic
method is as least as good as the iterative method.
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