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Abstract— In this paper, the implementation of a new Auto-
covariance Least-Square (ALS) technique for livestock hybrid
ventilation systems and associated indoor climate with a Model
Predictive Control (MPC) strategy is presented. The design
is based on thermal comfort parameters for poultry in barns
and a combined dynamic model describing the entire system
knowledge. Reference offset-free tracking is achieved using
target calculation and quadratic programming and adding
a disturbance model that accommodates unmeasured distur-
bances entering through the process input. The unknown noise
covariances are diagnosed and corrected by applying the ALS
estimator with the closed loop process data. The comparative
simulations show the performance improvement with the ALS
estimator in the presence of disturbances and moderate amount
of error in the model parameters. The results demonstrate the
high potential of ALS methods in improving the best practice
of process control and estimation.

I. INTRODUCTION

Environmental control for living systems differs greatly

from comparable control for physical systems. Environ-

mental requirements for living systems are typically more

complex and nonlinear, and the biological system is likely

to have significant and numerous effects on its physical

surroundings. The design objective of this work is hybrid

ventilation system and associated indoor environment for

livestock barn, where hybrid ventilation systems combine

the natural ventilation and mechanical ventilation, and have

been widely used for livestock stables. Based on a so called

conceptual multi-zone method, the horizontal variation of the

indoor temperature and ventilation rate are taken into account

and the entire system becomes a strongly coupled Multiple

Input and Multiple Output (MIMO) dynamic nonlinear sys-

tem. The system is exposed to external disturbances with

random noises and has actuators with saturation.

As stated in books [1] and [2], papers [17], [4] and [5],

Model Predictive Control (MPC) has become the advanced

control strategy of choice by industry mainly for the eco-

nomically important, large-scale, multi-variable processes in

the plant. The rationale for MPC in these applications is

that it can deal with strong non-linearities, handle constraints

and modeling errors, fulfill offset-free tracking, and it is
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easy to tune and implement. Consequently, applying MPC

technology to allow a trade-off between the thermal comfort

and energy consumption within constraints is necessary.

The heat dissipation from living animals such as pigs

or poultry is one of the major influencing factors to the

indoor comfort conditions, and lack of the knowledge about

these disturbances makes the implementation of the control

algorithm complicated, especially when covariances of the

disturbance are unknown. A variety of methods have been

proposed to solve this problem. A new Autocovariance

Least-Squares (ALS) method for estimating noise covari-

ances using routine operating data is employed to recover

the covariances and adaptively determine an optimal filter

gain. Odelson, Lutz, Rawlings [6] and Odelson, Rajamani,

Rawlings [7] have researched and proved the superior advan-

tages of ALS method convincingly through comparing with

previous work.

In this paper, the livestock indoor environment and its

control system will be regarded as a feedback loop. Through

regulation, target calculation and state estimation, the predic-

tive controller provides the optimal control actions involved

with operating the valves and the fans. The ALS technique

is not only expected to give an optimal estimator gain, but

also to improve the closed loop performance in the presence

of disturbances and model/plant mismatch. The comparative

simulation results with the nominal controller and the ALS

method are illustrated.

II. PROCESS DYNAMIC MODELING

The schematic diagram of a large scale livestock barn

equipped with hybrid ventilation system analyzed with con-

ceptual multi-zone method is shown in Fig. 1(1), 1(2) and

1(3). The system consists of evenly distributed exhaust units

mounted in the ridge of the roof and fresh air inlet openings

installed on the walls. From the view of direction A and B,

Fig. 1(a) and 1(b) provide a description of the dominant air

flow map of the building including the airflow interaction

between each conceptual zone.

As stated in [8] and [9], the differential algebraic equations

govern sensible heat for indoor thermal comfort is shown in

(1). The subscript i represents the zone number.

Micp,i
dTi

dt
= Q̇i+1,i + Q̇i,i+1 + Q̇in,i

+ Q̇out,i + Q̇conve,i + Q̇source,i,
(1)

where, Ti is the zonal air temperature (oC), cp,i is the specific

heat of the air (J ·kg−1 ·K−1), Mi is the mass of the air (kg),

Q̇i+1,i, indicate the heat exchange (J/s) due to the air flow
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Fig. 1. Large Scale Livestock Barn and the Dominant Airflow Map of the
Barn

across the conceptual boundary of zone i and zone i + 1.

Q̇in,i, Q̇out,i represent the heat transfer (J/s ) by air flow

through inlet and outlet respectively. The convective heat loss

through the building envelope is denoted by Q̇conve,i (J/s).

The heat source Q̇source,i includes the heat gain from animal

heat production and heating system.

The volume flow rate through the inlet is calculated by (2),

where Cd is the discharge coefficient, A is the geometrical

opening area (m2), ∆P is the pressure difference across the

opening (Pa) and can be computed by a set of routines solv-

ing thermal buoyancy and wind effect as (3). The subscript

re f stands for the value at reference height, NPL stands for

the Neutral Pressure Level (NPL). The internal pressure at

NPL is denoted by Pi.

qin = Cd ·A ·

√

2 ·∆P

ρ
, (2)

∆P =
1

2
CPρoV 2

re f −Pi +ρog
Ti −To

Ti

(HNPL −Hin). (3)

The exhaust unit consists of an axial-type fan and a swivel

shutter. We introduce a fan law, as a relationship between the

total pressure difference ∆Pf an, volume flow rate qout and

supplied voltage Vvolt with a specific shutter opening angle

which can be expressed in (4) and (5), where the parameters

a0, a1, a1 are empirically determined.

∆Pf an = a0 · (Vvolt)
2 +a1 ·qout · (Vvolt)+a2 ·q

2
out , (4)

∆Pf an =
1

2
ρoCP,rV

2
re f −Pi −ρig

Ti −To

To

(HNPL −H f an). (5)

For a detailed description and necessary simplifying as-

sumptions of those system models development, we refer to

[10].

III. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) refers to a class of

control algorithms that compute a sequence of manipulated

variable adjustments by utilizing a process model to forecast

process behavior and optimize based on a linear or quadratic

open-loop performance objective, subject to equality or in-

equality constraints over a future time horizon.

A. Model Transformation

We regard the livestock ventilation system as two parts by

noting that the overall system consists of a static air distrib-

ution system (inlet-exhaust air flow system) and a dynamic

thermal system (animal environmental zones). Both of these

two systems are mildly nonlinear with MIMO. However,

representing or approximating a nonlinear model’s dynamic

response with some form of linear dynamics is an easy and

illuminating way to analyze and solve on-line optimization,

and especially, for processes maintained at nominal operating

conditions and subject to small disturbances, the potential

improvement of using a nonlinear model in MPC would

appear small.

Through substitution and multiplication as described in

[9], the general form of a combined Linear Time Invariant

(LTI) state space model as (6) connecting the airflow model

with thermal model, and representing the entire system

dynamics around the equilibrium point is obtained.

x(k +1) = A · x(k)+B ·u(k)+Bd ·

[

dumd(k)
dmd(k)

]

, (6a)

y(k) = C · x(k)+D ·u(k)+Dd ·

[

dumd(k)
dmd(k)

]

, (6b)

where,

Bd =
[

Bdumd Bdmd

]

,Dd =
[

Ddumd Ddmd

]

. (7)

and, A ∈ ℜ3×3, B ∈ ℜ3×9,C ∈ ℜ3×, D ∈ ℜ3×9,Bd ∈

ℜ3×8,Dd ∈ ℜ3×8 are the coefficient matrices at the equilib-

rium point. x,y,u,dumd ,dmd denote the sequences of vectors

representing deviation variable values of the process state

for the indoor temperature of each conceptual zone, the

controlled output which is equal to the state, the manipulated

input which consists of the valve openings and voltage

supplied to the fans, the disturbances of the heat generated

from animals and heating system, and the disturbances of

external wind speed, wind direction and ambient temperature

respectively.

x =
[

T̄1 T̄
2

T̄3

]T

3×1
, (8a)

u =
[

Āin,i=1...6 V̄volt, j=1...3

]T

9×1
, (8b)

dumd =
[

¯̇Q1
¯̇Q2

¯̇Q3

]T

3×1
, (8c)

dmd =
[

V̄re f c̄P,w c̄P,l c̄P,r T̄o

]T

5×1
. (8d)

The pair (A,B) is controllable and the pair (A,C) is observ-

able. Thus, the nonlinear plant model has been transformed

into a series of LTI state space models and well prepared for

solving the optimization problem in the predictive control

scheme as will be discussed in the following sections.
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B. Disturbance Model and State Estimation

To achieve offset-free control of the output to their de-

sired targets at steady state, in the presence of plant/model

mismatch and/or un-modeled disturbances, the system model

expressed in (6) is augmented with an integrating disturbance

according to the general methodology proposed in [11]

and [12]. The process states are influenced by the input

disturbances from animal heat production, heating system

and external weather condition. The animal productivity heat

which is affected by various factors, will be modeled by

integrating a random white noise. The resulting augmented

system with process noise nw and measurement noise nv is:

x̃(k +1) = Ãx̃(k)+ B̃u(k)+ G̃nw(k), (9a)

y(k) = C̃x̃(k)+nv(k), (9b)

nw(k) ∼ N(0,Qw(k)), (9c)

nv(k) ∼ N(0,Rv(k)), (9d)

in which the augmented state and system matrices are defined

as follows,

x̃(k) =

[

x(k)
xumd(k)

]

6×1

, Ã =

[

A BdumdCumd

0 Aumd

]

6×6

,

B̃ =

[

B

0

]

6×9

,C̃ =
[

C 0
]

3×6
, G̃ =

[

Bdmd 0

0 Bumd

]

6×11

.

(10)

The full process state x ∈ ℜ3 and unmeasurable disturbance

state xumd ∈ ℜ3 are estimated from the plant measurement y

by means of a steady state Kalman filter. The process and

measurement noise nw and nv are assumed to be uncorrelated

zero-mean Gaussian noise sequences with covariance Qw and

Rv. The determination of these covariances for an optimal

filter gain is addressed in the ALS estimator section. The

measurable deterministic disturbance dumd ∈ ℜ8 is assumed

to remain unchanged within the prediction horizon and equal

to the constant at the last measured value, namely dumd(k) =
d̂dumd(k+1/k) = · · ·= d̂dumd(k+Hp−1/k). The detectability

of the augmented system in (9d) is guaranteed when the

condition holds:

Rank

[

(I −A) −G

C 0

]

= n+ sd , (11)

in which, n is the number of the process states, sd is the

number of the augmented disturbance states. This condition

ensures a well-posed target tracking problem. For detailed

explanation about the proof refer to [13] and [14].

C. Target Calculation

We now formulate the target tracking optimization as the

quadratic program formulation in (12), subjected to the con-

straints in (13), in which the steady state target of input and

state vector us and xs can be determined from the solution

of the following computation when tracking a nonzero target

vector yt . The objective of the target calculation is to find

the feasible triple (ys,xs,us) such that ys and us are as close

as possible to yt and ut , where ut is the desired value of the

input vector at steady state, and, ys = Cxs.

min
[xs,us]

T
Ψ = (us −ut)

T Rs(us −ut) (12)

s.t.







[

I −A −B

C 0

][

xs

us

]

=

[

Bdumd d̂umd,k/k +Bdmddmd

yt

]

umin ≤ us ≤ umax

(13)

In this quadratic program, Rs is a positive definite weighting

matrix for the deviation of the input vector from ut . d̂umd,k/k

is the current estimate of the unmeasured state disturbance.

The equality constraints in (13) guarantee a steady-state

solution and offset free tracking of the target vector.

D. Constrained Receding Horizon Regulation

Given the calculated steady state, the constrained opti-

mization problem is formulated by a quadratic cost function

(14) on finite horizon, subjected to the following linear

equality and inequalities (15) formed by the system dynamics

(6) and equipment limitation and the constraints on the

controlled variables.

min
uN

Φk = ŵT
k+NQ̄ŵk+N +∆vT

k+NS∆vk+N+ (14)

+
N−1

∑
j=0

[

ŵT
k+ jC

T QCŵk+ j + vT
k+ jRvk+ j +∆vT

k+ jS∆vk+ j

]

s.t.































wk+ j = xk+ j − xs,
vk+ j = uk+ j −us,
wk+ j+1 = Awk+ j +Bvk+ j,
ymin − ys ≤Cwk+ j ≤ ymax − ys, j = j1, j1 +1, · · · j2
umin −us ≤ vk+ j ≤ umax −us, j = 0,1, · · ·N −1

∆umin ≤ ∆vk+ j ≤ ∆umax, j = 0,1, · · ·N
(15)

where, Φ is the performance index to be minimized by

penalizing the deviations of the predictive state x̂k+ j, control

input uk+ j and the rate of change ∆uk+ j, at time j, from the

desired steady states. Q ∈ ℜ3×3 and S ∈ ℜ9×9 are symmetric

positive semi-definite penalty matrices, R ∈ ℜ9×9 is sym-

metric positive definite penalty matrix. It is commonly taken

that Q comprises terms of the form CTC where rk+ j−yk+ j =
C(xs −xk+ j). The vector uN contains the N future open-loop

control moves as shown below

uN =











uk

uk+1

...

uk+N−1











(16)

At time k+N, the input vector uk+ j is set to zero and kept at

this value for all j ≥ N in the open-loop objective function

value calculation. As discussed in previous section, the plant

is stable, therefore, according to [15], QN is defined as the

infinite sum: QN =
∞

∑
i=0

AT i
QAi, which will be determined

from the solution of the discrete Lyapunov equation: QN =
CT QC+AT QNA. This regulator formulation guarantees nom-

inal stability for all choices of tuning parameters satisfying

the conditions outlined above [16], [17].
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The output constraints are applied from time k+ j1, j1 ≥ 1,

through time k+ j2, j2 ≥ j1. The value of j2 is chosen such

that feasibility of the output constraints up to time k + j2
implies feasibility of these constraints on the infinite horizon.

The value of j1 is chosen such that the output constraints are

feasible at time k. The constrained regulator will remove the

output constraints at the beginning of the horizon up to time

k + j1 in order to obtain feasible constraints and a solution

to the quadratic program. Muske and Rawlings in [16] and

[18] explain the existence of finite values for both j1 and j2.

Through on-line constrained dynamic optimization, we

could obtain a sequence of optimal control signals uN

through a state and disturbance estimator, and the first input

value in uN , uk, is injected into the plant. This procedure is

repeated by using the plant measurements to update the state

vector at time k.

IV. ALS ESTIMATOR

The technique described in this section is originated in

[7]. Consider the LTI discrete-time model of the augmented

system as (9d), estimates of the states of the system are

constructed using the standard Kalman filter as (17)

x̂k+1/k = Ax̂k/k−1 +Buk +ALk(yk −Cx̂k/k−1). (17)

The estimate error is defined as εk = xk − x̂k/k−1, with

covariance Pk/k−1. This covariance Pk/k−1 = E
[

εkεT
k

]

is the

solution to the Riccati equation (18)

Pk+1/k = APk/k−1AT +GQwGT

−APk/k−1CT
[

CPk/k−1CT +Rv

]−1
CPk/k−1AT ,

(18)

and the Kalman gain Lk is defined as (19)

Lk = Pk/k−1CT
[

CPk/k−1CT +Rv

]−1
. (19)

Assume we process the yk to obtain state estimates using a

linear filter with gain L, which is not necessarily the optimal

L for the system. The state estimation error εk evolves

according to (20)

εk+1 = (A−ALC)εk +
[

G −AL
]

[

wk

vk

]

. (20)

The state space model of the innovations Y = yk −Cx̂k/k−1

is defined as (21)

εk+1 = Āεk + Ḡw̄k, (21a)

Yk = Cεk + vk, (21b)

in which,

Ā =
[

A−ALC
]

n×n
, Ḡ =

[

G −AL
]

n×(g+p)
,

w̄ =

[

wk

vk

]

(g+p)×1

.
(22)

n is the number of states in (9d), p is the number of outputs, g

is the number of independent noises. (A,C) is detectable, Ā =
A−ALC is stable, the initial estimate error is distributed with

mean m0 and covariance P−

0 . We choose k sufficiently large

so that the effects of the initial condition can be neglected,

or equivalently, we choose the steady-state distribution as the

initial condition:

E(ε0) = m0 = 0,cov(ε0) = P−

0 = P−. (23)

Now we consider the autocovariance which is defined as

the expectation of the data with some lagged version of itself

[19]

C j = E
[

YkY
T

k+1

]

, (24)

and the symmetric autocovariance matrix (ACM) is then

defined as (25)

R(N) =







C0 · · · CN−1

...
. . .

...

C T
N−1 · · · C0






, (25)

where, N is the user-defined number of lags used in ACM.

Accordingly, an ACM of the innovations can be written as

follows:

[R(N)]s
=

[

(O ⊗O)(In2 − Ā⊗ Ā)−1 +(Γ⊗Γ)In,N

]

(G⊗G)(Qw)s

+
{[

(O ⊗O)
(

In2 − Ā⊗ Ā
)−1

+(Γ⊗Γ)In,N

]

(AL⊗AL)

+
[

Ψ⊕Ψ+ Ip2N2

]

Ip,N

}

(Rv)s ,

(26)

in which

O =











C

CĀ
...

CĀN−1











,Ψ = Γ

[

N
⊕
j=1

(−AL)

]

,

Γ =











0 0 0 0

C 0 0 0
...

. . .
...

...

CĀN−2 · · · C 0











.

(27)

In,N is a permutation matrix that converts the direct sum to

a vector, i.e. In,N is the (pN)2× p2 matrix of zeros and ones

satisfying
(

N
⊕

i=1
Rv

)

s

= Ip,N (Rv)s , (28)

where, the subscript s denotes the outcome of applying the

vec operator. Practically, the estimate of the autocovariance

from real data is computed as

Ĉ j =
1

Nd − j

Nd− j

Σ
i=1

YiY
T

i+ j, (29)

where, Nd is the sample size. Therefore, the estimated ACM

R̂(N) is analogously defined using the computed Ĉ j.

We define the ALS estimate as

x̂ =
[

(Q̂w)T
s (R̂v)

T
s

]T
= argmin

x

∥

∥

∥
A · x̂− R̂(N)s

∥

∥

∥

2

2
, (30)

and the solution for estimating Qw, Rv is the well-known

x̂ = (A T
A )−1

A
T
· b̂, (31)
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where, A indicates the left hand side matrix to the least

square problem, and

A =
[

D(G⊗G) D(AL⊗AL)+
[

Ψ⊕Ψ+ Ip2N2

]

Ip,N

]

,

(32)

D =
[

(O ⊗O)(In2 − Ā⊗ Ā)−1 +(Γ⊗Γ)In×N

]

, (33)

x =
[

(Qw)T
s (Rv)

T
s

]T
,b = R(N)s. (34)

The uniqueness of the estimate is a standard result of

least-squares estimation [20]. The covariance can be found

uniquely when the matrix A has full column rank. However,

in the augmented system as (9d), the dimension of the driving

noise is w ∈ ℜ11, according to [6] and [7], it is unlikely to

find unique estimates of the covariance (Qw,Rv), and the

solution may not be positive semi-definite. In order to avoid

leading to any meaningless solution, adding the semi-definite

constraint directly to the estimation problem to maintain

a convex program as (35) will ensure uniqueness of the

covariance estimation.

V = min
Qw,Rv

∥

∥

∥

∥

A

[

(Qw)s

(Rv)s

]

− b̂

∥

∥

∥

∥

2

2

s.t.

{

Qw ≥ 0

Rv ≥ 0

(35)

The constraints in (35) are convex, and the optimization is

in the form of a semi-definite programming (SDP) problem,

which can be solved efficiently with Newton’s method [21].

V. SIMULATION RESULTS

In order to demonstrate the benefits of using ALS method,

the comparisons between using the ALS and nominally

tuned estimator combined with MPC are presented. Since

we have introduced an integrated white noise model for the

input disturbance which could account for the model/plant

mismatch, the following simulation results are derived in

presence of a step change of deterministic un-modeled output

disturbance. We assume that the state noise covariance Qw =
0.01 and measurement noise Rv = 0.001. The data set used

for ALS computation is collected from open loop nonlinear

plant simulation. Let Nd = 200 and N = 12. The first 30

points are used as the training set, and the rest are used as

a validation set. For the control system, the sampling time

step is Ts = 120(s), the prediction horizon is HN = 20.

The estimator gain determined from the known covari-

ances is conventionally regarded as a good tuning choice.

However, as demonstrated in Fig. 2, in the presence a

step increase of output disturbance, there are some marked

contrasts in the closed loop output performances between

using the ALS estimator (solid curves) and the conventional

estimator. Using the ALS estimator, the regulator is able

to reject the disturbances, tracking the reference faster and

further reduce the steady state variances. The frequency

distribution for the actuator’s changes are shown in Fig. 3

and Fig. 4 respectively. The changing frequency of the six

inlet vents openings and supplied voltages for three fans are

about the same and prove that the improved closed loop
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performance does not require more aggressive manipulated

inputs through using ALS estimator.

The covariance estimation techniques are based on the

properties of the process innovations. Implementing ALS

has high potential for improving the quality of estimation

in comparison with the original estimator. This may be

illustrated as Fig. 5 by comparing the frequency distribution

of the innovations Y = yk −Cx̂k/k−1 for ALS with that of an

nominal estimator.
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Fig. 5. Histogram of the Innovations with ALS method and Nominal
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In conclusion, the normal tuning approach for estimator

gain is time consuming and probably prone to failure espe-

cially when the real covariances are not known. The pre-

dictive controller combined with the ALS estimator is able

to not only achieve off-set free tracking, but also design an

optimal estimator to compensate model/plant mismatch and

un-modeled disturbances without sacrificing more control

actions.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

The main achievement of this work is the efficient appli-

cation of the ALS method to design an adaptive estimation

filter for Model Predictive Control of livestock ventilation

systems. Through linearization of the nonlinear system, an

LTI model in terms of state space representation which

connected the thermal system and air distribution system

is derived, and augmented by the integrated white noise

disturbance model to achieve offset-free control. The pre-

sented simulation results show the significant advantages

and performance improvement when using MPC over linear

models for control and ALS method for estimation.

B. Future Works

The entire control and estimation system will be imple-

mented and identified in a real scale livestock barn equipped

with hybrid ventilation systems in Syvsten, Denmark. The

result will be compared with those obtained with the cur-

rently used control and estimation system.
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