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Abstract— This paper presents a method for prediction
of uncertain closed loop systems, where the uncertainties
are depending on operating points. Such model uncertainties
are often present when complicated non-linear systems are
predicted. The method uses precomputed mean and variances
of the prediction error depending on the operation point given
by references and disturbances. These uncertainty models are
stored in a model bank, linear interpolation is applied to the
elements of the model bank in order to predict uncertainty
bounds on the predictions using the statistics of the past
prediction uncertainties. It is as well proposed to update the
uncertainty prediction models on-line. The potential of the
method is illustrated by an example from a coal-fired power
plant. This example shows prediction of the uncertainties as
a bounded region in which the given system variable can be
assumed to be contained in. In the example these successfully
bound the system variables while in comparison applying a
simple prediction diverges from the system.

I. INTRODUCTION

Prediction of dynamic system performance is of interest

in numerous fields like meteorology, biology, economics,

physics, medicine etc, see [1], [2], [3], [4], [5] and [6].

In control engineering this prediction of dynamic systems

represented by models is a key part of model predictive

control, see [7]. In all this work a model is used to represent

the real system. The model is subsequently used to predict

the future performance of the system. In most of the work

on prediction of the dynamic system the focus is on finding

good models representing the system, and using these to

predict the expected time series of the future behavior of

the system, see [8], [9], [10], [11] and [12]. Little focus has

been on prediction of uncertain models where uncertainties

and uncertain system conditions are taken into account in

the prediction. Robust model predictive control is an excep-

tion, where worst case model uncertainties are included in

the optimization of the control law, see [13], [14], [15],

[16], [17], [18], [19] and [20]. These do not, however,

directly give a prediction of the uncertainty of the system

performance. Instead they compute a control law, which

guarantees acceptable worst case system performance.

Adaptation of the prediction model does not solve this

prediction problem, since the model structure is given,
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and the uncertainties cannot always be described only by

varying parameters in this model. This means it can be

assumed that they will derivate from the system with time.

The expected time series behavior of the system is only out

of a number of possible system trajectories, and using only

one can be misleading. E.g. in this case where the operator

of the plant could be interested in a “what if” scenario,

where the task is to predict how the plant will behave

given certain disturbances and reference changes, where

the plant is still subject to given constraints on its outputs.

The operator can subsequently take actions accordingly to

these predictions of the future performance. It is of high

importance to know that the required state value can be

achieved within time with a certain probability, or to predict

the upper and lower bounds of the proper performance,

given a certain probability.

In [21] a method was presented, which used statistics of

past prediction errors for a prespecified number of samples

to predict upper and lower bounds on the uncertainty of

the expected prediction for k-step predictions. The statistics

of k-step prediction was computed as mean and variance

of a number of most recent k-step predictions. These are

computed for all k ∈ {1 · · ·K} where K is the maximal

required prediction horizon. These arrays are updated after

each sample where new residuals are computed. In order

to relate the states in the prediction model to the present

time/sample an observer is introduced. This observer can

as well be used to estimate disturbances into the system

using an internal model representing the disturbance.

This representation of the uncertainties is only relevant in

cases where the uncertainties are due to time varying model

parameters and not uncertainties due to non-linearities

where different operating points result in different model

uncertainties. Instead it is proposed to represent the model

uncertainties as statistics depending on references and

disturbances. Meaning that the uncertainty models are

stored in a data base representing samples of the definition

set of reference and disturbances. Linear interpolation is

subsequently used to compute the uncertainty model for

reference and disturbance values not directly represented in

the uncertainty model base. A further option is to adapt the

stored uncertainty models then a larger number of samples

at the given set of operating points are present.

The system in question is subsequently described in

Section II. In Section III prediction of the expected value

is described together with the prediction of the uncertainty.

In this section the interpolation scheme and the adaptive

update of the uncertainty model are given as well. The
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Fig. 1. Overview of the predictor structure, where the observer estimates
the present states and in some cases the disturbances as well. The
prediction model predicts the system behavior and uncertainties k steps
into the future.

scheme is applied to a power plant example in Section IV.

In Section V the conclusions are drawn.

II. THE SYSTEM

The system is a closed loop system, which from the

prediction point-of-view is represented by a state space of

the form

xm[n + 1] = fm (xm[n], r[n],d[n]) , (1)

ym[n] = gm (xm[n]) , (2)

where fm() and gm() are the nonlinear model mappings,

xm[n] is the model state vector, y[n] is a vector of model

outputs, d[n] is a vector of the disturbances, and r[n] is a

vector of the references to the close loop system.

A residual is defined as in (3) to represent the deviation

between the system output and the model output.

ξ[n] = y[n] − ym[n]. (3)

III. THE PREDICTOR

The structure of this suggested predictor is illustrated by

Fig. 1, where the system inputs and outputs are used to esti-

mate the present state values. These are fed to the predictor

together with system inputs and outputs in order to predict

the expected values as well as the uncertainty bounds. x̂[n]
and d̂[n] denote the estimated state and disturbance vectors

for the time instance n. nm[n] is the measurement noise.

ŷ[n] is the vector of the predicted system output for the

time n, ǫu[n] and ǫl[n] denote respectively upper and lower

bounds on system prediction for the time n.

The observer and predictor (prediction model) will sub-

sequently be described in more details.

The closed loop model is uncertain with respect to the

real system. Consequently an observer is introduced in

order to estimate the value of the states at the sample time

n.

x̂[n] = Γ (x̂[n − 1],u[n],y[n]) , (4)

where Γ is an operator representing the observer, and x̂[n]
is the estimated state vector at time n.

The estimated states can be used to predict the state

and the output vectors a number of samples/steps into the

future. In some cases the reference is partly known in the

future due to the prediction of the required plant production,

such as power plants since the general power production is

planned one day ahead. The disturbance might be known

up to time n, e.g. by estimation. Subsequently these are

denoted: r̂[n] and d̂[n]. The k-step predictor of the output,

y[n + k|n], and states, x[n + k|n], are computed by

x[n + 1|n] = fm

(

x̂[n], r̂[n], d̂[n]
)

, (5)

where

x[n + 2|n] = fm

(

x[n + 1|n], r̂[n], d̂[n]
)

. (6)

Continue this recursive process until x[n + k|n] is com-

puted, and then compute

y[n + k|n] = gm

(

x[n + k|n], r̂[n], d̂[n]
)

. (7)

Now where the k-step predictor is defined, it is possible

to define a k-step prediction error residual.

ξ[n + k|n] = y[n + k] − ym[n + k|n]. (8)

This prediction residual defined by (8) can of course only

be computed earliest at sample n.

As previously stated the model is assumed to be un-

certain in relation to the real system. It also means that

y[n+N +1|n] is more certain than y[n+N +2|n] validated

in terms of the variance of ξ[n + N + 1|n] is smaller

than the variance of ξ[n + N + 2|n]. In other words the

prediction is expected to be more uncertain as longer into

the future the prediction is made. This is illustrated by Fig.

2. The predicted system value is drawn with the dashed

line, (from sample n + 1 to sample n + 8), the measured

system output value is drawn with solid line (sample n−2
to n). The uncertainty of the predicted values are marked

by the vertical markings, with the small horizontal lines at

the ends, the distance between these end markings represent

the uncertainty for the specific predicted system value.

In the context mentioned in the introduction (see Section

I), it is as well interesting to predict a region in which

output can be expected to be in. E.g. in order to verify if it

is possible for the system to reach a specific state value in a

given time period, e.g. whether the required performance of

the system during a load change can be fulfilled given the

specified operation conditions. This situation is illustrated

by Fig. 3, in which the required system output region
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Fig. 2. Illustration of the uncertainty in the prediction. The uncertainty
at each prediction step is increased as the number of prediction steps
increases.

Required

state value

nn−2 n−1 n+1 n+3 n+4n+2 n+5 n+6 n+7

Fig. 3. Illustration of situation where a specific output value is required
to be reach with a given time. This figure shows two possible future
behaviors of the system, where one reaches the required value in time
and the other do not.

shall be reached at sample n + 5, two different possible

system behaviors are shown, where the dashed line reaches

the required value in time and the dotted line does not.

The restarting of the plant is a costly process, meaning it

would be preferable if it could be known beforehand if

it is possible at all to reach the requested values in time.

This means it is interesting to predict the uncertainty of the

prediction as well.

A. The uncertainty predictor

The uncertainty of the prediction can be represented in

a number of ways. In this approach the prediction error

residuals are assumed to be a normal random process, with

a specific variance and mean depending on the number of

prediction steps. ξ[n + k|n] is the prediction uncertainty at

sample n + k given estimate at n.

ξ[n + k|n] = Φ
(

σk
r[n+k],d[n+k], µ

k
r[n+k],d[n+k]

)

, (9)

where Φ is the normal distributed random process,

σk
r[n+k],d[n+k] is the variance of the k-step prediction error

for reference at time n + k and disturbance at time n + k,

µk
r[n+k],d[n+k] is the mean of the k-step prediction error

for reference at time n + k and disturbance at time n + k.

B. The uncertainty model parameter bank

The uncertainty model parameters are stored in a

database, ordered accordingly to the depending variables,

e.g. r[n + k] and d[n + k] for k-step prediction. For each

element in this model parameter bank, a set of model

parameters are attached.

The simplest way to use these model parameters is to

use the instance in the model bank, which is nearest to

specified, depending variables.

C. Linear interpolation of model bank

Another way to find model parameters between elements

in the model bank is to use linear interpolation between the

represented points. Define the mean and variance which are

requested interpolated as: ρk
(r,d) and µk

(r,d), and define the

operating points which they are closest to as ρk
(rc,dc)

and

µk
(rc,dc)

.

ρk
(r,d) is interpolated as

ρk
(r,d) = ρk

(rc,dc)
+

R
∑

n=1

(rn − rcn
) ·

(

ρk
rn,dc

− ρk
rc,dc

)

,

(10)

+

D
∑

n=1

(rn − rcn
) ·

(

ρk
rc,dn

− ρk
rc,dc

)

,

where

rn =
[

rc1 · · · rn · · · rcR

]T
, (11)

dn =
[

dc1 · · · dn · · · dcD

]T
. (12)

µk
(r,d) is interpolated as

µk
(r,d) = µk

(rc,dc)
+

R
∑

n=1

(rn − rcn
) ·

(

µk
rn,dc

− µk
rc,dc

)

,

(13)

+

D
∑

n=1

(rn − rcn
) ·

(

µk
rc,dn

− µk
rc,dc

)

,

where

rn =
[

rc1 · · · rn · · · rcR

]T
, (14)

dn =
[

dc1 · · · dn · · · dcD

]T
. (15)
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D. Adapting the model bank

The reference and disturbance depending reference mod-

els might change with time. Consequently with time the

uncertainty model parameters should preferably be updated.

A simple method for updating the uncertainty models are,

subsequently, presented. When more than N samples in the

given operational region have been sampled, then compute

mean and variance of these, denote these µnew and ρnew.

Subsequently, update the model parameters as in (16-17).

µ = A · µold + B · µnew, (16)

ρ = A · ρold + B · ρnew, (17)

where

A =
γ · Nold

γ · Nold + N
, (18)

B =
N

γ · Nold + N
, (19)

γ is a training factor and Nold are the number of element

used to compute the old set of model parameters.

IV. EXAMPLES

The proposed scheme for predicting the uncertain closed

loop system is illustrated by a simulation of a power

plant. The purpose of the simulations is to validate that

this method for prediction of uncertain systems can be

used to predict the uncertainty bounds on the predicted

performance of the system. The model found in [22] and

[23] is extended with a coal mill model, and an uncertainty

model. An overview of the model structure can be seen in

Fig. 4. The coal mill pulverizes and dries the coal dust,

before it is blown into the furnace. Two disturbances are

influencing the coal mill: outside temperature, To[n], and

coal moisture content, γ[n]. The temperature of the primary

air, Tpa[n], which is used to dry and lift the coal dust into

the furnace, is used to keep the coal dust temperature,

Tm[n] at 100◦C. In the furnace the coal dust is burned

and the hot flue gas is used to heat water to pressurized

steam. The steam temperature, Ts[n], and pressure, ps[n],
are used to control the plant. This control results in coal

flow, primary air flow and feed water flow requirements,

ṁc,ref[n], ṁpa,ref[n] and ṁf[n].
A simple three state model is made approximating this

system, which is in contrast with the simulation model’s 10

states. This reduction in states will consequently result in

large residual between prediction and simulation models.

The prediction method is subsequently applied, with

a prediction horizon of 80 samples. First the prediction

without linear interpolation is used. a good represent of the

predictions of the data, starts at sample 500 and predicts

80 samples. The value of three variables are predicted,

these are flue gas temperature, Tg[n], steam temperature,

Coal Mill Furnace

Mill Controller

Furnace Controller

γ, To

Tm

Tpa

ṁc, ṁpa

Ts, ps

Ts,ref

ps,ref
ṁc,ref

ṁpa,ref

ṁf

Fig. 4. Illustration of model structure
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Fig. 5. Plot of the predicted and “real” output Tg , without linear
interpolation. The three spikes at the bounds at time 560, 570, 580 is
due to change operating points.

Ts[n], and steam pressure, ps[n]. It is assumed that the

disturbance can be estimated at the time of the prediction,

and the references are assumed to be known during the

prediction period. Notice in the plots of the prediction that

the uncertainty bounds do not start together, this is due

to changes in the operating points in the beginning of the

prediction as well as the mean of the prediction errors are

included in the uncertainty models. These predictions can

be seen in Figs. 5-7. It is also seen that the prediction for

all variables are following the system well. From these it

can be seen that the prediction of the uncertainties have

some large jumps in the uncertainty prediction due to large

difference in the model parameter values.

Instead linear interpolation is used to interpolate between

points in the model set. These predictions can be seen in

Figs. 8- 10. The use of the linear interpolation has removed

the large jumps in uncertainty bounds prediction. These

plots also show that the system behavior is well bounded

by the uncertainty bounds, even though the prediction of

the expected value diverges from the system output.
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Fig. 6. Plot of the predicted and “real” output Ts, without linear
interpolation.
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Fig. 7. Plot of the predicted and “real” output ps, without linear
interpolation.
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Fig. 8. Plot of the predicted and “real” output Tg .
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Fig. 9. Plot of the predicted and “real” output Ts.
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Fig. 10. Plot of the predicted and “real” output ps.

V. CONCLUSION

This paper presents a method for prediction of uncertain

closed loop systems. The method uses precomputed mean

and variances of the prediction error depending on the

operating point given by references and disturbances. These

uncertainty models are stored in a model bank, which by

using linear interpolation is used to predict uncertainty

bounds on the prediction using the statistics of the past

prediction uncertainties. It is as well proposed to update

the uncertainty prediction models on-line. The potential of

the method is illustrated by an example from a coal-fired

power plant.
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