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Abstract— Prediction of the performance of plants like
power plants is of interest, since the plant operator can
use these predictions to optimize the plant production. In
this paper the focus is addressed on a special case where a
combination of high coal moisture content and a high load
limits the possible plant load, meaning that the requested
plant load cannot be met. The available models are in this
case uncertain. Instead statistical methods are used to predict
upper and lower uncertainty bounds on the prediction. Two
different methods are used. The first relies on statistics of
recent prediction errors; the second uses operating point
depending statistics of prediction errors. Using these methods
on the previous mentioned case, it can be concluded that
the second method can be used to predict the power plant
performance, while the first method has problems predicting
the uncertain performance of the plant.

I. INTRODUCTION

Monitoring of plant performance is an important task in

optimizing power plants production. Since early detection

of eventual problems or faults in the plant is essential to

achieve the required plant efficiency. A large set of different

problems is considered such as: badly tuned controllers,

faults etc. Some examples of dealing with these problems

are [1] which deals with performance monitoring of power

plants. Monitoring of control loops are dealt with in a

number of papers, a review of some these can be found in

[2]. [3] and [4] deal with fault detection in general. Some

examples on fault detection in power plants are [5], [6] and

[7].

Another kind of performance problems, which are in-

teresting to deal with, is due problematic combinations of

operating conditions (load request, operator set references,

known and unknown disturbances). Where each of the

conditions individually are in the accepted region, never-

theless, the combination of these conditions decreases the

performance of the plant or lead to failure of the plant.

An example of such a problem can be found in the coal

mills delivering dried and pulverized coal to the furnace in

a coal-fired power plant. The problem occurs while high

coal flow is requested at the same time, as the moisture

content in the raw coal is high. In some cases this will
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result in not enough energy being available in the mill to

dry the coal particles. Consequently the coal particles will

be accumulated in the mill. In [8] a solution to this problem

is proposed by bounding the achievable load.

Another approach to accommodate this problem is to

inform the power plant operators with predictions of the

future performance given the known conditions and planned

load/reference changes. The predicted performance shall

consequently be validated against the required plant per-

formance for this given situation. However, the available

models are uncertain which is a problem while predicting

the future of the plant. In [9] and [10] statistical methods

are developed to predict the uncertainty of the previous

mentioned prediction. The first method uses statistics of

recent windows of prediction, where a window is formed

for each prediction length in question. The second method

uses a bank of prediction error statistics depending on

the operating point of the plant, as well as on prediction

horizon. In this paper these two methods are applied to

the mentioned coal-fired power plant, using data containing

the problem due to the combination of high coal moisture

content and high plant load. Two sets of experimental data

are applied to these methods, one before the coal accumu-

lation is occurring and one during the coal accumulation.

These examples are used to see how well the future plant

performance is predicted. A reliable prediction is necessary

if one would like to use these predictions of the future plant

behavior and performance.

In Section II the power plant dealt with in the paper is

described. This is followed by a description of the used

statistically based prediction methods of uncertain systems

in Section III. In Section IV the prediction methods are

applied to experimental data from the power plant. In this

experiment conditions with high moisture content and high

load are present. A conclusion is drawn in Section V.

II. PLANT DESCRIPTION

The proposed scheme for predicting the uncertain closed

loop system is illustrated using measurements from a power

plant. The model of the plant is a combination of a furnace

model found in [11] and [12], and extensions consisting

of a coal mill model, and controllers. An overview of

the model structure can be seen in Fig. 1. The coal mill

pulverizes and dries the coal dust, before it is blown into

the furnace by the primary air flow. ṁc[n] denotes the

actual coal flow, ṁc,ref[n] denotes the reference/requested

coal flow, ṁpa[n] denotes the actual primary air flow,

ṁpa,ref[n] denotes the reference/requested primary air flow.
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Fig. 1. Illustration of model structure

Two disturbances to the coal mill is considered, these

are the outside temperature, To[n] and the coal moisture

content, γ[n]. The temperature of the primary flow, Tpa[n],
which is used to dry and lift the coal dust in to the furnace,

Tm, are used to manipulate the coal dust temperature to be

at 100◦C. In the furnace the coal dust is burned and the

hot flue gas is used to heat water to pressurized steam. The

steam temperature, Ts[n], and pressure, ps[n], are used to

control the plant, since references are given to those. This

control results in coal flow and feed water flow, ṁf[n],
requirements.

The non-linear plant model is subsequently linearized

and reduced to a 5 state linear model. The outputs of

this linear model are coal mill temperature, Tm[n], Steam

temperature, Ts[n], and steam pressure, ps[n]. Controlled

inputs are reference to steam temperature, Ts,ref[n], and

reference to steam pressure, ps,ref[n]. Two other inputs to

the model are not controlled, the first is the coal moisture,

γ[n], is estimated using the method presented in [13], and

the second is the outside temperature which is provided in

measurement set.

The experimental data used in this work is sampled with

an interval of 60s at the power plant. The data contains load

change from 85% load down to 65% load, at sample 65, and

up again to 85% load at sample 340. The measured outputs

can be seen in Fig. 2. The moisture content, on the other

hand, is increasing during the experiment from 14% to

15.5% at the time of the second load change, consequently

not enough energy is available to heat and evaporate the

moisture from the pulverized coal. This can be seen by the

plot of Tm[n] which decreases below the evaporation point

of the moisture. This drop in Tm[n] is an example of a non-

acceptable performance. A consequence is that these wet

coal particles are too heavy to be lifted up to the furnace

by the primary air flow. Therefore the coal particles are

accumulated inside the coal mill, as a result a higher coal

flow is requested by the furnace controller, however, this

does lead to even more coal being accumulated in the coal

mill instead of being blown into the furnace. In this case the
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Fig. 2. Plots of the measurements of Tm[n], Ts[n] and ps[n].

moisture content drops again, resulting in more coal being

blown into the furnace than requested. Such a situation

could result in an overheating of the plant. A safety stop is

consequently necessary. Stops of the power plant are highly

costly, so these should be avoided if possible.

III. STATISTICAL UNCERTAINTY PREDICTION METHODS

These two statistically based predictors used in this paper

are presented in [9] and [10]. These are based on the

same general structure of the predictor, which is illustrated

by Fig. 3. Where the system inputs and outputs are used

to estimate the present state values, these are fed to the

predictor together with system inputs and outputs in order

to predict the expected values as well as the uncertainty

bounds. x̂[n] and d̂[n] denote the estimated state and

disturbance vectors for the time instance n. ŷ[n] is the

vector of the predicted system output for the time n, ǫu[n]
and ǫl[n] denote respectively upper and lower bounds on

system prediction for the time n.

The observer and predictor (prediction model) will sub-

sequently be described in more details.

The close loop model is uncertain with respect to the real

system. Consequently an observer is introduced in order to

estimate the value of the states at the sample time n.

x̂[n] = Γ (x̂[n− 1],u[n],y[n]) , (1)

where Γ is an operator representing the observer, and x̂[n]
is the estimated state vector at time n, u[n] is a vector

of plant inputs and y[n] is a vector of plant outputs. The

used type of observer depends on the application, which

this scheme is applied to. In specific example and optimal

unknown input observer is used, see [3].

The estimated states can be used to predict the state

and the output vectors a number of samples/steps into the

future. In these specific cases the reference is partly known

in the future due prediction of the required plant production,

such as power plants since the general power production

is known one day ahead. The disturbance might be known
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Fig. 3. Overview of the predictor structure, where the observer estimates
the present states and in some cases the disturbances as well. The
prediction model predicts the system behavior and uncertainties k steps
into the future.

up to time n, I.e. by estimation. Subsequently these are

denoted: r̂[n] and d̂[n]. The k-step predictor of the output,

y[n+ k|n], and states, x[n+ k|n], are computed by

x[n+ 1|n] = fm

(

x̂[n], r̂[n], d̂[n]
)

, (2)

where

x[n+ 2|n] = fm

(

x[n+ 1|n], r̂[n], d̂[n]
)

, (3)

continue this recursive process until x[n+k|n] is computed.

Then compute

y[n+ k|n] = gm

(

x[n+ k|n], r̂[n], d̂[n]
)

. (4)

Now where the k-step predictor is defined, it is possible

to define a k-step prediction error residual.

ψ[n+ k|n] = y[n+ k] − ym[n+ k|n]. (5)

This prediction residual defined in (5) can of course only

be computed earliest at sample n.

As previously stated the model is assumed to be un-

certain in relation to the real system. It also means that

y[n+N+1|n] is more certain than y[n+N+2|n] validated

in terms of the variance of ψ[n+N + 1|n] is smaller than

the variance of ψ[n+N+2|n]. In other words the prediction

is expected to be more uncertain as the prediction horizon

increases. This is illustrated by Fig. 4. The predicted system

value is drawn with the dashed line, (from sample n+1 to

sample n+ 8), the measured system output value is drawn

with solid line (sample n− 2 to n). The uncertainty of the

predicted values are marked by the vertical markings, with

the small horizontal lines at the ends, the distance between

nn−1n−2 n+2n+1 n+3 n+4 n+6 n+7n+5 n+8

Fig. 4. Illustration of the uncertainty in the prediction. The uncertainty
at each prediction step is increased as the number of prediction steps
increases.

these end markings represent the uncertainty for the specific

predicted system value.

The question is how this uncertainty shall be dealt with.

The mentioned predictor does predict the future expected

output values of the dynamical systems.

In the context mentioned in the introduction (see Section

I), it is as well interesting to predict a region in which

output can be expected to be in, e.g. for the operator to see

how the plant will perform given the prespecified conditions

and references. These uncertainty predictions can be used

to compute the upper and lower bounds of the prediction

as:

ǫu[n+ k|n] = ŷ[n+ k|n] + ǫ[n+ k|n], (6)

ǫl[n+ k|n] = ŷ[n+ k|n] − ǫ[n+ k|n]. (7)

In this paper two different statistically based methods for

predicting the uncertainty are compared. The first method

computes mean and variance of a given number of the most

resent prediction errors at the prediction steps in question,

see [9]. The advantage of this method is to be found if the

model uncertainty is strongly time varying but independent

of operating points. The second method uses a bank of

precomputed mean and variance of prediction errors at

different operating points (references, disturbances etc.),

see [10]. This method is preferable if model uncertainties

are depending on the operating point. It is as well possible

to adapt the uncertainty model bank to present prediction

errors, as some time dependency can be included in the

uncertainty models.

A. The uncertainty predictor - method I

In this approach the uncertainty of the prediction can be

represented by a distribution depending on the references
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and eventual disturbances. For simplifications the predic-

tion errors are assumed to be a normal random process, with

a specific variance and mean depending on the prediction

horizon, depending on the vector of references, r, and

the vector of disturbances, d. ǫ[n + k|n] is the predicted

uncertainty at sample n+ k given estimate at n.

ǫ[n+ k|n] = Φ (σk,n, µk,n) , (8)

where Φ is the normal distributed random process, σk,n

is the variance of the k-step prediction error at sample n,

µk,n is the mean of the k-step prediction error at sample n.

These statistics are computed based on recorded prediction

errors, where only the M most recent time samples are

considered.

The variance σk,n can be computed as

σk,n = var













r[n−M + 1 + k|n−M + 1]
...

r[n+ k|n]












. (9)

The mean ηk,n can be computed in a similar way

µk,n = mean













r[n−M + 1 + k|n−M + 1]
...

r[n+ k|n]












.

(10)

These normal distributions can be used to compute

uncertainty bounds on the prediction given a η confidence

interval. I.e. the uncertainty bounds bound the possible

system output values given probability of η.

B. The uncertainty predictor - method II

The second proposed scheme computes the statistics

depending on the operational points. ǫ[n + k|n] is the

predicted uncertainty at sample n + k given estimate at

n.

ǫ[n+ k|n] = Φ
(

σk
r[n+k],d[n+k], µ

k
r[n+k],d[n+k]

)

, (11)

where Φ is the normal distributed random process,

σk
r[n+k],d[n+k] is the variance of the k-step prediction error

for reference at time n+ k and disturbance at time n+ k,

µk
r[n+k],d[n+k] is the mean of the k-step prediction error

for reference at time n+ k and disturbance at time n+ k.

a) The uncertainty model parameter bank: The statis-

tics of prediction errors depend on the operating points,

which can be considered as uncertainty model parameters

are stored in a data base, ordered accordingly to the

depending variables, e.g. r[n+ k] and d[n+ k] for k-step

prediction. For each element in this model parameter bank,

model parameters are attached. The simplest way to use

these model parameters is to use the instance in the model

bank, which is closest to specified depending variables.

However, linear interpolation between model elements are

obvious to use, see [10].
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Fig. 5. Plot of prediction using the two statistical based methods for
Tm[n], predicted from sample 220 and 80 samples into the future. The
upper plot shows method I, and he lower plot shows method II.

IV. EXPERIMENTAL EXAMPLES

In these experiments the linear model described in Sec-

tion II and an observer are used to estimate the state values.

In addition an optimal unknown input observer is used,

see [3]. For the used uncertainty prediction methods a

confidence interval at 90% is used.

The predictor of the uncertain system is applied to two

sets of measured data from the plant, presented in Section

II, and notice the sample time is 60s. The first set is sampled

during the low load, where the system performance is

predicted from sample 220 and 80 samples into the future.

At this time accumulation of coal is not occurring. The

second data set is sampled during the problem of coal

accumulation, where the system performance is predicted

from sample 621 and 80 samples into the future. Notice

that in the plotted prediction the uncertainty bounds do not

start together due to the introduction of the mean of the

prediction error in the uncertainty models.

The first set of prediction can be seen in Figs. 5-

7, in which the upper plot shows the prediction using

method I and the lower plot prediction using method II.

Fig. 5 illustrates the prediction of Tm[n]. From this it can

be seen that uncertainty bounds of method II covers the

measured system behavior while method I does cover all

measurement points except a few points between sample

280 and 290. This means that the uncertainty bounds are

computed too narrow.

Fig. 6 illustrates the prediction of Ts[n]. From this it

can again be seen that uncertainty bounds of method II

covers the measured system behavior while method I does

not cover all measurement points, (230-246, 246-247, 278-

284, 287-300).

Fig. 7 illustrates the prediction of ps[n]. From this it

can again be seen that uncertainty bounds of method II
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Fig. 6. Plot of prediction using the two statistical based methods for
Ts[n], predicted from sample 220 and 80 samples into the future. The
upper plot shows method I, and the lower plot shows method II.
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Fig. 7. Plot of prediction using the two statistical based methods for
ps[n], predicted from sample 220 and 80 samples into the future. The
upper plot shows method I, and the lower plot shows method II.

covers the measured system behavior while method I does

approximately not the last 20 measurement samples.

From this set of experimental data and the prediction

of system performance it can be seen that method I using

statistics of recent prediction errors has problems covering

the system behavior. On the other hand method II using

statistics depending on operating points covers the system

performance. This is a consequence of the model uncer-

tainty depending more on the point of operation than on

time.

The attention is now turned to the second set of mea-

surement and predictions, from sample 620. These plots

can be seen in Figs. 8-10. Fig. 8 illustrates the prediction

of Tm[n]. From this it can be seen that uncertainty bounds
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Fig. 8. Plot of prediction using the two statistical based methods for
Tm[n], predicted from sample 620 and 80 samples into the future. The
upper plot shows method I, and the lower plot shows method II.
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Fig. 9. Plot of prediction using the two statistical based methods for
Ts[n], predicted from sample 620 and 80 samples into the future. The
upper plot shows method I, and the lower plot shows method II.

of method II covers the measured system behavior while

method I does not cover all measurement points.

Fig. 9 illustrates the prediction of Ts[n]. From this it

can be seen that uncertainty bounds of both method I and

method II cover the measured system behavior.

Fig. 10 illustrates the prediction of ps[n]. From this it can

be seen that uncertainty bounds of method I and method II

covers the measured system behavior.

This set also illustrates the problem of method I and that

method II predict uncertainties such that they cover the

actual measured outputs. This means that these uncertainty

predictions can be used by the operator to see how the

future performance of the system given the specified oper-

ating conditions. This can be used in other cases than the
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Fig. 10. Plot of prediction using the two statistical based methods for
ps[n], predicted from sample 620 and 80 samples into the future. The
upper plot shows method I, and the lower plot shows method II.

one described in this paper, e.g. start-up of the plant where

specific state values shall be reached in a given time, in this

case the operator can used these uncertainty prediction to

see how the start-up process is proceeding and eventually

take action if required.

V. CONCLUSION

Prediction of the performance of plants like power plants

are of interest, since the operator can use these predictions

to optimize the plant settings. In this paper the focus is

put on a special case where a combination of high coal

moisture content and a high load limits the possible plant

performance, meaning that the requested load cannot be

met. The available models are uncertain especially in this

case. Instead statistical methods are used to predict un-

certainty bounds on the prediction. Two different methods

are used. The first rely on statistics of moving windows

of recent prediction errors, the second one uses operating

point depending statistics of prediction errors. Using these

methods on the experimental data, it can be concluded that

the second method can be used to predict the power plant

performance given the set of operating conditions with high

moisture content and high load, while the first method has

problems doing so. In addition to the described problem,

this uncertain plant performance prediction can also be of

use during plant start-up.
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