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Abstract— Predicting the performance of large scale plants
can be difficult due to model uncertainties etc, meaning that
one can be almost certain that the prediction will diverge
from the plant performance with time. In this paper output
multiplicative uncertainty models are used as dynamical
models of the prediction error. These proposed dynamical
uncertainty models result in an upper and lower bound
on the predicted performance of the plant. The dynamical
uncertainty models are used to estimate the uncertainty of
the predicted performance of a coal-fired power plant. The
proposed scheme, which uses dynamical models, is applied
to two different sets of measured plant data. The computed
uncertainty bounds cover the measured plant output, while
the nominal prediction is outside these uncertainty bounds for
some samples in these examples.

I. INTRODUCTION

Predicting the performance of large scale plants can be

difficult due to model uncertainties etc, meaning that one

can be almost certain that the prediction will diverge from

the actual plant performance with time. A strategy updating

the prediction model at each time sample, see [1], will still

result in prediction errors and uncertainties, since the model

complexity will be limited.

An example on such a plant is a power plant, where

prediction of the plant performance can be used to iden-

tify possible unfortunately situations due to problematic

combinations of operating conditions such as (load request,

operator set references, known and unknown disturbances).

Where as each of the conditions individually might be in

the accepted region, nevertheless, the combination of these

conditions decreases the performance of the plant or lead

to a failure of the plant. An example of such a problem can

be found in the coal mills delivering dried and pulverized

coal to the furnace in a coal-fired power plant. The problem

occurs when high coal flow is requested at the same time as

the moisture content in the raw coal is high, and not enough

energy is available in the mill to dry the coal particles.

These wet coal particles are too heavy to be lifted into

the furnace; as a consequence the coal particles will be

accumulated in the mill. In [2] a solution to this problem

is proposed by bounding the achievable load.
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The power plant operators do also play an important role

in handling such problems. If the operator has access to

a prediction of the system performance given the known

conditions and planned load/reference changes, the operator

could take actions according to the predictions. However,

it is known that the available models are uncertain. Conse-

quently the prediction of the future performance deviates

from the future system performance of the plant. In [3]

and [4] statistically based methods for predicting bounding

functions of the uncertainties are presented. These use

statistics of past prediction errors for predicting these

bounds on the future predictions. In [5] such a statistically

based method is applied to a performance problem in a

coal-fired power plant, where high moisture content of the

raw coal, results in accumulation of coal in the coal mill,

which dries and pulverizes the coal before it is blown into

the furnace.

For many dynamical systems the model uncertainties are

deterministic meaning it would be better to use a dynamical

uncertainty model instead of a statistical one. In this paper

it is proposed to compute the uncertainties using dynamical

uncertainty models as used in H∞-theory, see [6]. The

prediction uncertainty models are computed using output

multiplicative uncertainty models. The nominal model is

used to predict an expected system behavior. Combining

this nominal model prediction with real system data, an

uncertain of the prediction is obtained; this uncertainty is

modeled by a dynamical model.

The plant used as an example is described in Section II.

Section III describes the proposed dynamical uncertainty

modeling scheme. The experiments on the power plant

data is described in Section IV. The paper is concluded

in Section V.

II. PLANT DESCRIPTION

The proposed scheme for predicting the uncertain closed

loop system is illustrated by measurement data from a

power plant. The model used for predicting the plant

performance is a combination of a furnace model found in

[7] and [8]. The model is extended with a coal mill model,

and controllers. An overview of the model structure can be

seen in Fig. 1. The coal mill pulverizes and dries the coal

dust, before it is blown into the furnace by the primary air

flow. ṁc[n] denotes the actual coal flow, ṁc,ref[n] denotes

the reference/requested coal flow, ṁpa[n] denotes the actual

primary air flow, ṁpa,ref[n] denotes the reference/requested

primary air flow. Two disturbances to the coal mill are
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Fig. 1. Illustration of model structure

considered, these are the outside temperature, To[n] and the

coal moisture content, γ[n], the temperature of the primary

flow. Tpa[n], which is used to dry and lift the coal dust in

to the furnace, are used to keep the coal dust temperature,

Tm[n], at 100◦C. In the furnace the coal dust is burned

and the hot flue gas is used to heat water to pressurized

steam. The steam temperature, Ts[n], and pressure, ps[n],
are used to control the plant, since references are given to

those. This control results in coal flow and feed water flow,

ṁf[n], requirements.

The non-linear plant model is subsequently linearized

and reduced to a 5 state linear model. The outputs of

this linear model are: Coal mill temperature, Tm[n], Steam

temperature, Ts[n], and steam pressure, ps[n]. Controlled

inputs are reference to steam temperature, Ts,ref[n], and

reference to steam pressure, ps,ref[n]. Another variable in

the model which is not controlled or measured is the

coal moisture, γ[n], which is estimated using the method

presented in [9].

In this context acceptable performance of the plant can

be defined as selected plant variables being inside some

specified bounds, meaning that the performance prediction

is used to predict if the plant variable can be expected to

be inside these specified bounds in the future. Using only

a nominal prediction model does not provide a usable pre-

diction of the future plant performance since uncertainties

are not taken into account.

The experimental data from the power plant is sampled

with an interval of 60s. The data used in this work contains

a load change from 85% load down to 65% load, at sample

65, and up again to 85% load at sample 340. The measured

outputs can be seen in Fig. 2. The moisture content, on

the other hand, is increasing during the experiment from

14% to 15.5% at the time of the second load change.

Consequently not enough energy is available to heat and

evaporate the moisture from the pulverized coal, this can

be seen by the plot of Tm[n] which decreases below the

evaporation point of the moisture, this is an example of

non-acceptable performance of the system. A consequence
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Fig. 2. Plots of the measurements of Tm[n], Ts[n] and ps[n].

is that these wet coal particles are too heavy to be lifted up

to the furnace by the primary air flow. Therefore the coal

particles are accumulated inside the coal mill. As a result

the plant controllers request a higher coal flow. However,

this leads to even more coal being accumulated in the coal

mill instead of being blown into the furnace. In this case the

moisture content drops again, resulting in more coal being

blown into the furnace than requested. Such a situation

could result in an overheating of the plant. A safety stop is

consequently necessary. Stops of the power plant are highly

costly, so these should be avoided if possible. One should

also notice that the references are known in advance since

these are precomputed for guiding the load.

III. UNCERTAINTY PREDICTION METHOD

The two statistically based predictors used in this paper

are presented in [3] and [4]. These are based on the same

general structure of the predictor, which is illustrated by

Fig. 3. Where the system inputs and outputs are used

to estimate the present state values, these are fed to the

predictor together with system inputs and outputs in order

to predict the expected values as well as the uncertainty

bounds.

x̂[n] and d̂[n] denote the estimated state and disturbance

vectors for the time instance n. ŷ[n] is the vector of the

predicted system output for the time n, ǫu[n] and ǫl[n]
denote respectively upper and lower bounds on system

prediction for the time n.

The observer and predictor (prediction model) will sub-

sequently be described in more details.

The close loop model is uncertain with respect to the real

system. Consequently an observer is introduced in order to

estimate the value of the states at the sample time n.

x̂[n] = Γ (u[n],y[n], x̂[n − 1]) , (1)

where Γ is an operator representing the observer, and x̂[n]
is the estimated state vector at time n, u[n] is a vector of

plant inputs and y[n] is a vector of plant outputs.
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Fig. 3. Overview of the predictor structure, where the observer estimates
the present states and in some cases the disturbances as well. The
prediction model predicts the system behavior and uncertainties k steps
into the future.

The estimated states can be used to predict the state

and the output vectors a number of samples/steps into the

future. In this case the reference is partly known into the

future due to prediction of the required plant production,

such as power plants where the plant production is planned

one day ahead. The disturbance might be known up to

time n, i.e. by estimation. Subsequently the reference is

denoted r̂[n] and the disturbance is denoted d̂[n]. The

k-step predictor of the output, y[n + k|n], and states,

x̂[n + k|n], are computed by

x̂[n + 1|n] = fm

(

x̂[n], r̂[n], d̂[n]
)

, (2)

where

x̂[n + 2|n] = fm

(

x̂[n + 1|n], r̂[n], d̂[n]
)

, (3)

continue this recursive process until x̂[n+k|n] is computed,

subsequently compute

ŷ[n + k|n] = gm

(

x̂[n + k|n], r̂[n], d̂[n]
)

. (4)

Now when the k-step predictor is defined, it is possible

to define a k-step prediction error residual.

e[n + k|n] = y[n + k] − ŷ[n + k|n]. (5)

This prediction residual defined (5) can of course only

be computed earliest at sample n.

As previously stated the model is assumed to be uncer-

tain in relation to the real system. It also means that the

prediction is expected that the uncertainty increase with

increasing prediction horizon. This is illustrated by Fig. 4.

The predicted system value is drawn with the dashed line,

(from sample n+1 to sample n+8), the measured system

nn−1n−2 n+2n+1 n+3 n+4 n+6 n+7n+5 n+8

Fig. 4. Illustration of the uncertainty in the prediction. The uncertainty
at each prediction step is increased as the number of prediction steps
increases.

output value is drawn with solid line (sample n − 2 to

n). The uncertainty of the predicted values is marked by

the vertical markings, with the small horizontal lines at the

ends, the distance between these end markings represent

the uncertainty of the specific predicted system value.

The predictor proposed in this paper does predict the

future expected output values of the dynamical systems.

In the context mentioned in the introduction (see Section

I), it is as well interesting to predict a region in which the

output can be expected to be in, e.g. for the operator to

see how one can expect the performance of the plant to be

given the prespecified conditions and references.

A. Dynamical uncertainty prediction

The approach proposed in this paper uses output mul-

tiplicative uncertainty models to model the prediction un-

certainties from the nominal prediction model. The output

multiplicative model is illustrated in Fig. 5, in which G

represents the nominal prediction model fed with ŷ[n],
r̂[N |n] and d̂[N |n]. W is the dynamical weighting func-

tion, given by a transfer function, representing the bounding

uncertainties and ∆[n] ∈ {−1 : 1}, which gives all possible

uncertainty behaviors. The output of the nominal prediction

is ŷ[N |n], and the bounding uncertainty predictions are

denoted ǫu[N |n] and ǫl[N |n] for the upper and lower bound

respectively. These bounds are defined as the maximal and

minimal output of the uncertainty model with the nominal

prediction output as input to the uncertainty model.

These uncertainty predictions can be used to compute

the upper and lower bounds of the predictions as:

ǫu[n + k|n] = ŷ[n + k|n] + ǫ[n + k|n], (6)

ǫl[n + k|n] = ŷ[n + k|n] − ǫ[n + k|n]. (7)

W is defined as a filter bounding the frequency content

of the past prediction errors. Define a vector of the most
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Fig. 5. Illustration of the nominal prediction model and multiplicative
output prediction uncertainty model.

recent prediction errors with specified prediction horizon k

as

E[q] =
[

e[q + 1|q] · · · e[q + k|k]
]

, (8)

for the time n the most recent vector is E[n − k]. The

corresponding vectors of the most recent prediction values

can be defined as

Y[q] =
[

y[q + 1|q] · · · y[q + k|k]
]

. (9)

These pairs of relating E[q] and Y[q] vectors are subse-

quently grouped into different relevant point of operation

given by references and disturbances. For each of these

point-of-operation groups a filter W is computed as a filter

bounding the maximal values for all frequencies of the

difference between the prediction vectors and the prediction

error vectors.

max
ω

(FFT(E[q]) − FFT(Y[q])) , ∀q ∈ Qr,d, (10)

where Qr,d is the set of pairs contained in the specified

group of operating points. FFT represent the standard fast

Fourier transform, see [10]. The useful type of filter clearly

depends on the application, which the scheme is applied on.

In order to simplify the filter parameter identification

the order and structure of W can be prespecified. In the

example using in Section IV a first order filter is used, and

the parameters are found using Matlab’s ident toolbox.

To be certain that ǫu and ǫl bound the prediction uncer-

tainties ∆ is set equal to 1. However, in practice this might

be conservative. Instead ∆ can be adapted to the present

prediction uncertainty by

∆[n] =

∥

∥FFT(R[n − k]) − FFT(Y[n − k])
∥

∥

∥

∥W
∥

∥

. (11)

The upper bound can subsequently be computed as

ŷ[n] + ǫ[n], (12)

and the lower bound

ŷ[n] − ǫ[n], (13)

where ǫ in the case where ∆ is not corrected, denoted as

NC, is computed as

ǫ[n] = ∆ · W ŷ[n], (14)

where ǫ in the case where ∆ is corrected according to the

present prediction uncertainty , denoted as C, is computed

as

ǫ[n] = ∆[n] · W ŷ[n]. (15)

This adaptation of ∆[n] gives a less conservative rep-

resentation of the uncertainty bounds of the prediction,

and whereby gives a much better prediction taking the

uncertainties into account.

One should notice that the nominal prediction is not

guaranteed to be included in the uncertainty bounds, if the

nominal prediction model has a DC-modeling/prediction

error.

IV. EXPERIMENTS

In these experiments the linear model described in Sec-

tion II is used for the predictor. In addition an optimal

unknown input observer is used to estimate the state values,

see [11].

These experiments are used to validate that the uncer-

tainty predictor can predict the measured system variables

during different plant conditions.

The predictor of the uncertain system is applied to two

sets of experimental data from the power plant presented

in Section II. Notice that the sample time is 60s. The first

set is during the low load, where the system performance is

predicted from sample 220 and 80 samples into the future.

At this time accumulation of coal is not occurring. The

second example contains the problem of coal accumulation,

where the system performance is predicted from sample

621 and 80 samples into the future.

The prediction for the first example can be seen in Figs.

6-8, and the plots of the second example are plotted in Figs.

9-11. The order of the plots are Tm[n], Ts[n] and ps[n]. In

each of the plots both the non-corrected prediction bounds

and the corrected prediction bounds are plotted.

a) Example One: The predictions of Tm[n], Ts[n] and

ps[n] for example one are shown in Figs. 6-8, from these

it can be seen that the uncertainty bounds covers all the

measured variables, both in the corrected and non-corrected

cases. However, the nominal prediction is not covered for

all samples. The corrected uncertainty prediction bounds

narrow the uncertainty region as expected, and as men-

tioned previously, still contain the measured values.

b) Example Two: The predictions of Tm[n], Ts[n]
and ps[n] for the second example are shown in Figs. 9-

11, from these it can be seen that the uncertainty bounds

cover all the measured variables, both in the corrected and

non-corrected cases. The corrected uncertainty prediction

bounds narrow the uncertainty region as expected, and as

mentioned previously, still contain the measured values.

V. CONCLUSION

In this paper output multiplicative uncertainty models

are used as dynamical models of the prediction errors
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Fig. 6. Plot of Tm[n] for example one. Both the non-corrected (NC) and
corrected (C) uncertainty bounds contain the measured values, while the
nominal prediction is not contained for all samples.
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Fig. 7. Plot of Ts[n] for example one. Both the non-corrected (NC) and
corrected (C) uncertainty bounds contain the measured values.

for uncertain dynamical predictions. The proposed dynam-

ical scheme for estimating the prediction uncertainty is

validated by estimating the prediction uncertainty of the

performance of a coal-fired power plant. This prediction

method is applied to two different sets of measured data, a

set of data for operation under normal conditions and a set

of data for a combination of high moisture content and a

high load resulting in accumulation of coal in the coal mill.

These proposed dynamical uncertainty models result in an

upper and lower bound on the predicted performance of

the plant. These bounds contain the measured plant output,

while the nominal prediction is not covered for all samples

for both examples.
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Fig. 8. Plot of ps[n] for example one. Both the non-corrected (NC) and
corrected (C) uncertainty bounds contain the measured values.
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Fig. 9. Plot of Tm[n] for example one. Both the non-corrected (NC) and
corrected (C) uncertainty bounds contain the measured values, while the
nominal prediction is not contained for all samples.
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