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Abstract— In this paper, the implementation of a Model
Predictive Control (MPC) strategy for livestock ventilation
systems and the associated indoor climate through variable
valve opening and exhaust fan, is presented. The design is
based on Thermal Comfort (TC) and Indoor Air Quality
(IAQ) parameters for poultry in barns. The dynamic models
describing the nonlinear behavior of ventilation and associated
indoor climate, by applying a so-called conceptual multi-zone
method are used for prediction of indoor horizontal variation of
temperature and carbon dioxide concentration. The simulation
results illustrate the significant potential of MPC in dealing
with nonlinearities, handling constraints and performing off-
set free tracking for multiple control objectives. The entire
control systems are able to determine the demand ventilation
rate and airflow pattern, optimize the Thermal Comfort, Indoor
Air Quality and energy use.

I. INTRODUCTION

An optimum livestock indoor climate should enhance

voluntary feed intake and minimize thermal stresses that

affect animals. The alleviation of thermal strain and the

maintenance of comfort environment significantly depend on

the measurement and control of the air temperature and the

humidity. The humidity control is not considered in this work

because it has little effect on thermal comfort sensation at or

near comfortable temperatures unless it is extremely low or

high. On the other hand, proper indoor air quality is impera-

tive to maintain the health and productivity of farm workers

and animals. Hence, the concentration of contaminant gases,

such as carbon dioxide, has to be controlled through the

ventilation systems.

Hybrid ventilation systems combine the natural ventilation

and mechanical ventilation, and have been widely used for

livestock. Most existing control systems used for livestock

barns are based on analysis with the single zone method,

which assumes that the indoor air temperature and conta-

minant concentration are uniform [1]. However, the actual

indoor environment at any controlling sensors (especially

when the sensors are located horizontally) will depend on the

air flow distribution that is usually depicted as a map of the

dominant air paths. Therefore, the control system for large

scale livestock barns neglecting the horizontal variations
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could obviously result in significant deviations from the

optimal environment for the sensitive pigs or poultry. Fur-

thermore, the performance of currently used control schemes

for livestock are limited when large disturbances occur in the

presence of input saturation.

As stated in books [2], [3] and papers [16], [5], [6], Model

Predictive Control (MPC) has become the advanced control

strategy of choice by industry mainly for the economically

important, large-scale, multi-variable processes in the plant.

The rationale for MPC in these applications is that it can deal

with strong non-linearities, handle constraints and modeling

errors, fulfill offset-free tracking, and it is easy to tune and

implement.

In this paper, the livestock indoor environment and its

control system will be regarded as a feedback loop in which

the predictive controller provide the optimal actions to the

actuators taking into account the significant disturbances and

random noises. The MPC strategy is not only expected to

give good regulation of the horizontal variation of temper-

ature and concentration, but also to minimize the energy

consumption involved with operating the valves and the fans.

II. PROCESS DYNAMIC MODELING

A. Modeling of Thermal Comfort and Indoor Air Quality

The schematic diagram of a large scale livestock barn

equipped with hybrid ventilation system analyzed with the

conceptual multi-zone method is shown in Fig. 1(1), Fig. 1(2)

and Fig. 1(3). The system consists of evenly distributed ex-

haust units mounted in the ridge of the roof and fresh air inlet

openings installed on the walls. From the view of direction

A and B, Fig. 1(a) and Fig. 1(b) provide a description of the

dominant air flow map of the building including the airflow

interaction between each conceptual zone. Through the inlet

system, the incoming fresh cold air mixes with indoor warm

air and circulates via the exhaust system, and then drop down

to the animal environmental zones slowly in order to satisfy

the zonal comfort requirement.

By applying a conceptual multi-zone method, the building

will be divided into several macroscopic homogeneous con-

ceptual zones horizontally so that the nonlinear differential

equation relating the zonal temperature and zonal concentra-

tion can be derived based on the energy and mass balance

equation for each zone as (1) and (2). The subscript i denotes

the zone number.

Micp,i
dTi

dt
= Q̇i+1,i + Q̇i,i+1 + Q̇in,i

+ Q̇out,i + Q̇conve,i + Q̇source,i

, (1)

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

ThA12.4

ISBN: 978-960-89028-5-5 4746



(a)


(b)


(1)


(2)


A


(3)


B


Fig. 1. Synoptic of Large Scale Livestock Barn and the Dominant Airflow
Map of the Barn

dCr,i

dt
= Cr,i+1 · ṅi+1,i +Cr,i · ṅi,i+1

+Cr,i · ṅout +Cr,o · ṅin +
Gi

Vi

. (2)

For (1), Ti is the indoor zonal air temperature (oC), cp,i

is the specific heat of the air (J ·kg−1 ·K−1), Mi is the mass

of the air (kg), Q̇i+1,i and Q̇i,i+1 indicate the heat exchange

(J/s) due to the air flow across the conceptual boundary of

zone i and zone i+1, while for the middle zones which have

heat exchange with neighbor zones on each side, two more

parts Q̇i−1,i, Q̇i,i−1 will be added. Q̇in,i, Q̇out,i represent the

heat transfer (J/s ) by mass flow through the inlet and outlet

respectively. The convective heat loss through the building

envelope is denoted by Q̇conve,i (J/s) and described as U ·

Awall,i · (Ti − To), where U is the heat transfer coefficient,

and Awall is the area of the wall. The heat source of the

zone Q̇source,i includes the animal heat productivity and heat

dissipated from heating system.

For (2), the rate of concentration is indicated as Cr,i · ṅi, in

which Cr,i (m3/m3) represents the zonal concentration and

ṅi (h−1) is the air exchange rate. The rate of the animal

carbon dioxide generation denoted by Gi (10−3m3/h) is

approximately 12 times the actual activity level denoted by

Ma (l/h), which is measured in met as stated in (3). The

zonal volume is Vi (m3).

G = 12 ·Ma. (3)

B. Modeling of Inlet Vent and Exhaust Fan System

The inlet system provides variable airflow directions and

controls the amount of incoming fresh air by adjusting the

bottom hanged flaps. The volume flow rate through the inlet

is calculated by (4), where Cd is the discharge coefficient,

A is the geometrical opening area (m2), ∆P (Pa) is the

pressure difference across the opening and can be computed

by a set of routines solving thermal buoyancy and wind

effect as (5). Vre f stands for the wind speed at reference

height. CP is the wind induced pressure coefficient and its

value changes according to the wind direction, the building

surface orientation and the topography and roughness of the

terrain in the wind direction. The subscript NPL stands for

the Neutral Pressure Level. The coefficient Cd for the inlet

system, varies considerably with the inlet type, opening area,

as well as incoming air temperature and flow rate. However,

for simplifying the computation, we use a constant value of

this coefficient for all openings, even though it might lead to

over/under-prediction of airflow capacity and thereby larger

openings than necessary.

qin = Cd ·A ·

√

2 ·∆P

ρ
, (4)

∆P =
1

2
CPρoV 2

re f −Pi +ρog
Ti −To

Ti

(HNPL −Hin). (5)

In the exhaust unit, the airflow capacity is controlled by

adjusting the r.p.m. of the fan impeller and by means of the

shutter. We introduce a fan law, as a relationship between

the total pressure difference ∆Pf an, volume flow rate qout and

supplied voltage Vvolt with a specific shutter opening angle

which can be approximated in a nonlinear static equation (6),

where the parameters a0, a1, a1 are empirically determined

from experiments made by SKOV A/S in Denmark. As

shown in (7), the total pressure difference across the fan is

the difference between the wind pressure on the roof and the

internal pressure at the entrance of the fan which considers

the pressure distribution calculated upon the internal pressure

at reference height denoted by Pi.

∆Pf an = a0 · (Vvolt)
2 +a1 ·qout · (Vvolt)+a2 ·q

2
out , (6)

∆Pf an =
1

2
ρoCP,rV

2
re f −Pi −ρig

Ti −To

To

(HNPL −H f an). (7)

For a detailed description for developing the models and

significant dynamic parameters estimation, we refer to [7].

III. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) refers to a class of

control algorithms that compute a sequence of manipulated

variable adjustments by utilizing a process model to optimize

forecasts of process behavior based on a linear or quadratic

open-loop performance objective, subject to equality or in-

equality constraints over a future time horizon.

A. Model Transformation

We regard the livestock ventilation system as two parts

by noting that the overall system consists of a static air

distribution system (inlet-exhaust air flow system) and a

dynamic environmental system (thermal comfort and indoor

air quality). Both of these two systems are mildly nonlin-

ear Multiple Input and Multiple Output (MIMO) systems.

However, representing or approximating a nonlinear model’s

dynamic response with some form of linear dynamics is

an easy and illuminating way to analyze and solve on-

line optimization, and especially, for processes maintained

at nominal operating conditions and subject to small dis-

turbances, the potential improvement of using a nonlinear
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model in MPC would appear small. Therefore, the developed

nonlinear process models are transformed into a series of

Linear Time Invariant (LTI) state space models through

linearization around the equilibrium points corresponding to

different inter-zonal airflow direction. The Thermal Neutral

Zone (TNZ) [8], [9], and the demand concentration level

are selected to be the criterion that represent the control

objective. Fig. 2 shows the synoptic of the entire system

model and the climate control variables.
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Fig. 2. Synoptic of Entire System Model and Climate Control Variables

Let the nonlinear continuous time model (1) which is

represented with three coupled equations for thermal comfort

be described in the discrete time linearized dynamics state

space form as (8):

xT (k +1) = AT · xT (k)+BT ·q(k)+BT d ·dT (k), (8a)

yT (k) = CT · xT (k)+DT ·q(k)+DT d ·dT (k), (8b)

where, AT ∈ R
3×3, BT ∈ R

3×9, BT d ∈ R
3×8, CT ∈ R

3×3,

DT ∈ R
3×9, DT d ∈ R

3×8 are the coefficient matrices with

subscript T denoting the model for the thermal comfort

system. k is the current sample number. In the similar

procedure, we could derive the state space form for the

indoor air quality system as (9) according to (2):

xC(k +1) = AC · xC(k)+BC ·q(k)+BCd ·dC(k), (9a)

yC(k) = CC · xC(k)+DC ·q(k)+DCd ·dC(k), (9b)

where, AC ∈ R
3×3, BC ∈ R

3×9, BCd ∈ R
3×12, CT ∈ R

3×3,

DT ∈ R
3×9, DT d ∈ R

3×12 are the coefficient matrices with

subscript C denoting the model for the concentration system.

By applying the conservation of mass for the livestock

building with one single zone concept (10), and through

linearization of air flow model deducted through (4) to (7),

we can derive the static equation (11).

6

∑
i=1

qin(k) ·ρo −

3

∑
j=1

qout(k) ·ρi = 0, (10)

E · v(k)+F ·u(k)+G ·w(k)+K · xT (k) = 0, (11)

where, E,F ,G,K are coefficients matrices. The definition of

v ∈ R
9+1 is: [qin,m,qout,n,Pi]

T , m = 1 · · ·6, n = 1 · · ·3, where,

[q]T1×9 is a airflow input vector which combines the actuators’

signals u and the thermal process controlled variables xT and

xC.

Connecting and coupling of the airflow model (11) with

the environmental models (8) and (9), evolve a finalized

LTI state space model representing the entire knowledge of

the performances for thermal comfort and indoor air quality

around the equilibrium point. The combined process model

is shown in (12)

x(k +1) = A · x(k)+B ·u(k)+Bd ·

[

dumd(k)
dmd(k)

]

, (12a)

y(k) = C · x(k)+D ·u(k)+Dd ·

[

dumd(k)
dmd(k)

]

, (12b)

where, A ∈ R
6×6, B ∈ R

6×9, C ∈ R
6×6, D ∈ R

6×9, Bd ∈

R
6×12, Dd ∈ R

6×12 are the coefficient matrices. The distur-

bance transient matrices Bd and Dd are formulated as (13)

corresponding to the unmeasured and measured disturbances.

Bd =
[

Bdumd Bdmd

]

,Dd =
[

Ddumd Ddmd

]

. (13)

x, y, u, dumd , dmd denote the sequences of vectors repre-

senting the deviation variable values of the process state of

zonal temperature xT and concentration xC, the controlled

output, the manipulated input which consists of the valve

openings and voltage supplied to the fans, the unmeasurable

disturbances of animal heat and carbon dioxide generation,

the measurable disturbances as the wind speed, wind di-

rection, ambient temperature and concentration level. The

representation of these vectors is shown in (14)

x =
[

T̄1 T̄2 T̄3 C̄r,1 C̄r,2 C̄r,3

]T

6×1
, (14a)

u =
[

Āin,i=1...6 V̄volt, j=1...3

]T

9×1
, (14b)

dumd =
[

¯̇Q1
¯̇Q2

¯̇Q3 Ḡ1 Ḡ2 Ḡ3

]T

6×1
, (14c)

dmd =
[

V̄re f c̄P,w c̄P,l c̄P,r T̄o C̄r,o

]

6×1
. (14d)

Concluded from systematical analysis, the pair (A,B) is

controllable, the pair (C,A) is observable, and the plant is

stable. Thus, the model transformation is accomplished and

well prepared for solving of the optimization problem in the

predictive control scheme which will be discussed in the next

section.

B. Disturbance Model and State Estimation

To achieve offset-free control of the output to their desired

targets at steady state, in the presence of plant/model mis-

match and/or unmeasured disturbances, the system model

expressed in (12) is augmented with an integrated distur-

bance model as proposed in [10] and [11]. The animal heat

and contaminant generation partly as a result of function

of the number of the animals, are measurable. The parts of

the stochastic generation process which in reality affected

by various factors, assumed to be unmeasured. The resulting

augmented system with process noise nw and measurement
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noise nv is:

x̃(k +1) = Ãx̃(k)+ B̃u(k)+ G̃nw(k), (15a)

y(k) = C̃x̃(k)+nv(k), (15b)

nw(k) ∼ N(0,Qw(k)), (15c)

nv(k) ∼ N(0,Rv(k)), (15d)

in which the augmented state and system matrices are

defined as follows,

x̃(k) =

[

x(k)
xumd(k)

]

12×1

, Ã =

[

A BdumdCdumd

0 Adumd

]

12×12

,

B̃ =

[

B

0

]

12×9

,C̃ =
[

C 0
]

6×12
, G̃ =

[

Bdmd 0

0 Bdumd

]

12×12

.

(16)

The full process state x ∈ R
6 and unmeasurable disturbance

state xumd ∈ R
6 are estimated from the plant measurement y

by means of a steady state Kalman filter. The process and

measurement noise nw and nv are assumed to be uncorrelated

zero-mean Gaussian noise sequences with covariance Qw and

Rv. The measurable deterministic disturbance dmd ∈ R
12 is

assumed to remain unchanged within the prediction horizon

and equal to the constant at the last measured value, namely

ddmd(k) = ddmd(k + 1/k) = · · · = ddmd(k + Hp − 1/k). The

detectability of the augmented system in 15 is guaranteed

when the following condition holds:

Rank

[

(I −A) −G

C 0

]

= n+ sd , (17)

in which, n is the number of the process states, sd is the

number of the augmented disturbance states. This condition

ensures a well-posed target tracking problem. For detailed

explanation about the proof refer to [12] and [13].

C. Target Calculation

We now formulate the target tracking optimization as the

quadratic program formulation in (18), subjected to the con-

straints in (19), in which the steady state target of input and

state vector us and xs can be determined from the solution

of the following computation when tracking a nonzero target

vector yt . The objective of the target calculation is to find

the feasible triple (ys,xs,us) such that ys and us are as close

as possible to yt and ut , where ut is the desired value of the

input vector at steady state, and, ys = Cxs.

min
[xs,us]

T
Ψ = (us −ut)

T Rs(us −ut) (18)

s.t.







[

I −A −B

C 0

][

xs

us

]

=

[

Bdumd d̂umd,k/k +Bdmddmd

yt

]

umin ≤ us ≤ umax

.

(19)

In this quadratic program, Rs ∈ R
9×9 is a positive definite

weighting matrix for the deviation of the input vector from

ut . d̂umd,k/k is the current estimate of the unmeasured state

disturbance. The equality constraints in (19) guarantee a

steady-state solution and offset free tracking of the target

vector.

D. Constrained Receding Horizon Regulation

Given the calculated steady state, the constrained opti-

mization problem is formulated by a quadratic cost function

(20) on finite horizon, subjected to the following linear equal-

ity and inequalities (21) formed by the system dynamics (12)

and constraints on the controlled and manipulated variables.

min
uN

Φk = ŵT
k+NQ̄Nŵk+N +∆vT

k+NSN∆vk+N+ (20)

+
N−1

∑
j=0

[

ŵT
k+ jC

T QCŵk+ j + vT
k+ jRvk+ j +∆vT

k+ jS∆vk+ j

]

s.t.































wk+ j = xk+ j − xs,
vk+ j = uk+ j −us,
wk+ j+1 = Awk+ j +Bvk+ j,
ymin − ys ≤Cwk+ j ≤ ymax − ys, j = 1,2, · · ·N
umin −us ≤ vk+ j ≤ umax −us, j = 0,1, · · ·N −1

∆umin ≤ ∆vk+ j ≤ ∆umax, j = 0,1, · · ·N

.

(21)

where, Φ is the performance index to be minimized by penal-

izing the deviations of the predictive state x̂k+ j, control input

uk+ j and the rate of change ∆uk+ j, at time j, from the desired

steady states. Q ∈R
6×6 and S ∈R

9×9 are symmetric positive

semi-definite penalty matrices for process states and rate

of input change, R ∈ R
9×9 is a symmetric positive definite

penalty matrix. It is commonly taken that Q comprises terms

of the form CTC where rk+ j−yk+ j =C(xs−xk+ j). The vector

uN contains the N future open-loop control moves as shown

below

uN =











uk

uk+1

...

uk+N−1











. (22)

At time k + N, the input vector uk+ j is set to zero and

kept at this value for all j ≥ N in the open-loop objective

function value calculation. As discussed in the previous

section, the plant is stable, therefore, according to [14], QN

is defined as the infinite sum: QN =
∞

∑
i=0

AT i
QAi, which will

be determined from the solution of the discrete Lyapunov

equation: QN = CT QC +AT QNA. This regulator formulation

guarantees nominal stability for all choices of tuning para-

meters satisfying the conditions outlined above [15], [16].

The output constraints are applied from time k+ j1, j1 ≥ 1,

through time k + j2, j2 ≥ j1. The value of j2 is chosen such

that feasibility of the output constraints up to time k + j2
implies feasibility of these constraints on the infinite horizon.

The value of j1 is chosen such that the output constraints are

feasible at time k. The constrained regulator will remove the

output constraints at the beginning of the horizon up to time

k + j1 in order to obtain feasible constraints and a solution

to the quadratic program. Muske and Rawlings in [15] and

[17] explain the existence of finite values for both j1 and j2.

Through on-line constrained dynamic optimization, we

could obtain a sequence of optimal control signals uN

through a state and disturbance estimator, and the first input

value in uN , uk, is injected into the plant. This procedure is
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repeated by using the plant measurements to update the state

vector at time k.

IV. SIMULATION RESULTS

In order to demonstrate the high potential of MPC for

multi-objective control within constraints, the comparison

between the system behaviors performed with and without

controller, in the presence of disturbances and noises, are

presented. For the following scenario, we assume that the

constraint stability of the control system is guaranteed in the

infinite horizon when the feasibility of the input constraints

is satisfied within the finite horizon N.

Fig. 3 is derived based on the nonlinear plant model

simulation which is developed from a laboratory livestock

stable, where the inlet vent opening is limited within 0(m2)-
0.6(m2), the supplied voltage to the fan is limited within

0(V )-10(V ), the entire volume of the laboratory livestock

stable is around 2500 (m3). Because of the slow response

of the nonlinear system behavior, the sampling time step

is defined to be 2 (min), the prediction horizon is N = 20.

The slew rate of the actuators are very fast compared with

the sample time and could be ignored. For animal thermal

comfort, the indoor temperature is limited within ±1.5(oC)
around the reference value 21oC within the TNZ. For indoor

air quality, the indoor air concentration level should be

maintained below 700(ppm).
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Fig. 3. Rejection of Deterministic Disturbance. Dynamic Performances of
Zonal Temperature with and without MPC

The open-loop performing curves (dashed lines) in Fig.

3 demonstrates the thermal system dynamic performances

with fixed reference control inputs to the nonlinear system,

and clarifies how the imposed disturbances (step changes

of ambient weather condition, such as the mean value of

external temperature increase from 10 oC to 14 oC, and pulse

changes of heating load, for instance, adding 2000 J/s in the

middle zone, and adding 1000 J/s in one of the other two

zones) influence the system.

The closed loop performance curves (solid lines) illustrates

the results with updated optimum control inputs to the non-

linear thermal comfort system. The weights Q on the tracking

errors are different according to different requirement of

control objective, the weights R on control inputs and weights

S on rate of input change are different for inlets and exhaust

fans. Through comparing the simulation results, we could

recognize that with the application of MPC, the system

behavior has been profoundly modified, and the variance of

the output has been reduced considerably.

In the same condition of disturbances setting, but with

a step change of the reference value for comfortable tem-

perature, Fig. 4 and 5 show the system performances and

actuators behavior. The indoor zonal temperatures keep

tracking the reference with slight variations, the carbon

dioxide concentration level falls down when the system begin

to reject the increase of external temperature by controlling

the rotating speed of the fans and opening area of the

inlet vents. Thus, the off-set free tracking performances has

been achieved by optimizing the steady state value and

introducing unmeasurable input disturbance model in terms

of integrated white noise. As shown in 5, the voltages of the

fans are immediately raised in response to the onset of the

disturbance, and ranged against the constraint, hold the value

below the constraint while the disturbance is present, and

decreased when the disturbance ceases. The variation of the

inlet vents openings on the windward side is smaller than the

openings on the leeward side, so that the essential negative

internal pressure ventilation strategy is always guaranteed,

and the wind gust through the inlet can also be avoided.

The advantage of MPC handling constraints in a natural and

flexible way, is manifested through this example.
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Fig. 4. Reference Tracking and Rejection of Deterministic Disturbance.
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Through step response analysis and bode plot compari-

son, we realize that, the plant nonlinearities are not highly

significant. By varying the disturbances such as the zonal

heat sources which cause the direction change of the inter

zonal airflow, and varying the external temperature which
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Opening Area

are the leading factors of the variation of the indoor thermal

comfort, we obtain similar system behaviors with a series of

LTI models.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Aiming at improvement of performances and optimiza-

tion of energy, the main achievement of this work is the

efficient application of MPC for indoor thermal comfort and

air quality. In this paper, an LTI model in terms of state

space representation which combined the thermal system and

concentration system in connection with the air distribution

system is derived. The Offset-free control is achieved through

target calculation, quadratic programming and augmentation

with unmeasured input disturbance model. The presented

simulation results show the significant advantages of using

MPC over linear models for control.

B. Future Work

The Moving Horizon Estimation method will be applied

when the unmeasured disturbance constraints are presented

and further performance improvement are needed. The

weighting matrix on the states of indoor temperature and

concentration will be further adjusted in order to achieve a

better equilibrium between multiple objectives requirements.

The entire control system will be identified through exper-

iments in a real scale livestock barn equipped with hybrid

ventilation systems in Syvsten, Denmark, and the result will

be compared with those obtained with the currently used

controller.
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