
A QUANTISED STATE SYSTEMS APPROACH

FOR JACOBIAN FREE EXTENDED KALMAN

FILTERING

Lars Alminde, Jan D. Bendtsen and Jakob Stoustrup ∗

∗ Department of Electronic Systems, Section of Automation

and Control, Aalborg University,

{alminde, dimon, jakob}@es.aau.dk

Abstract: Model based methods for control of intelligent autonomous systems rely
on a state estimate being available. One of the most common methods to obtain
a state estimate for non-linear systems is the Extended Kalman Filter (EKF). In
order to apply the EKF an expression must be available for the Jacobian of the
driving function; for complex systems this can be difficult to obtain. This paper
presents an EKF variation that makes use of integrated quantised state simulation
to propagate the state and obtain a backward difference estimate of the Jacobian at
a small computational cost. A simulation study of a deep space probe is presented.
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1. INTRODUCTION

Model based methods for control of intelligent
autonomous systems rely on a state estimate
being available. One of the most common methods
to obtain a state estimate for non-linear systems is
the Extended Kalman Filter (EKF) (Grewal and
Andrews 1993). In order to apply the EKF an
expression must be available for the Jacobian of
the driving function; for complex systems this can
be difficult to obtain.

This paper presents an EKF variation that makes
use of integrated Quantised State Simulation
(QSS) to propagate the state and obtain a back-
ward difference estimate of the Jacobian at a small
computational cost.

A simulation case study involving a spinning deep
space probe is presented which must infer its at-
titude and angular rates from vector-observations
of the sun and a fixed star. The simulation con-
firms that the QSS filter operates consistently and
demonstrates the advantages of the approach.

A companion paper, see (Alminde et al. 2007),
describes how the QSS approach can also be used
for control of non-linear autonomous systems.

The paper is organised as follows: In section (2)
an introduction to quantised state simulation is
given, followed by a review of the standard formu-
lation of extended Kalman filtering in section (3).
Hereafter it is described how QSS and the EKF
can be combined for efficient Jacobian free EKF
estimation in section (4). Section (5) describes the
case study and section (6) gives the simulation
results together with a discussion of the results.
Conclusions are given in section (7).

2. QUANTISED STATE SYSTEMS

Quantised State Systems is a recent approach
for propagating ordinary differential equations by
decoupling the states and transforming the system
into a discrete event system, where event times are
dynamically decided using a quantum separation
criteria between two models of different order



for each state. The approach was developed by
Kofman (2002). This paper will make use of the
QSS2 algorithm in which the event time is decided
using the difference between a first order and
second order model. This technique is reviewed in
the remainder of this section, and further details
can be found in Kofman (2002).

The QSS2 algorithm simulates systems of the
following form, with state vector x of dimension
n and input vector u of dimension m:

ẋ = f(x,u) (1)

y = g(x) (2)

The QSS2 algorithm integrates the state and pro-
duces the output g(x) by decoupling the system
into event-passing software entities representing
functions and integrators respectively, see fig. 1.
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Fig. 1. Structure of a QSS2 simulation. Thick lines
represent vector signals. This figure repre-
sents a system with two states

The following describes how the integrator blocks
and function blocks work, respectively.

2.1 QSS2 Integrators

The integrators maintain a first order and second
order model of the state trajectory as a function
of time since the last update, τ = t − tk.

x̄i(τ) = x̄i(tk) + ¯̇xiτ (3)

xi(τ) = xi(tk) + ẋiτ +
1

2
ẍiτ

2 (4)

where x̄i ∈ R and xi ∈ R are the i’th states in the
first- and second order models, respectively.

The second model is updated whenever an exter-
nal event occurs, i.e. new information from the
block representing f(x,u), while the first model
x̄i(τ), is updated when the difference between the
two models exceeds a preset quantum, i.e. when:

|x̄i(τ) − xi(τ)| > ∆Q (5)

where ∆Q is the chosen quantum. At each event
the next internal event time is calculated by
solving for τ in eq. (5).

The above scheme is sketched in fig. 2, which
provides an example trajectory. Here, it can be
seen how the models for x̄i(τ) and xi(τ) are

allowed to evolve independently whereafter upon
reaching the difference ∆Q are reset to the same
condition.
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Fig. 2. A sample QSS2 trajectory

With this formulation one can think of (x̄, ¯̇x) as an
operating point, or rather an operating trajectory,
with the guarantee that it is correct to within the
chosen quantum within the time interval until the
next event.

2.2 State and Output Maps

Whenever an integrator produces a new operating
trajectory, (x̄, ¯̇x), this is communicated to the
blocks that are connected to the output of the
integrator. For fig. 1 this means f(x,u) and g(x).
These function blocks then calculate new outputs
which depend on the input variable 1 .

In order to calculate the second derivative; the
block numerically derives a matrix with second
order information as in the first order Taylor ex-
pansion of f(z) with z = [xT uT]T (equivalently
for g(x)):

f(z(τ)) = f(z(tk)) +

[

∂f

∂z
(z(tk))

]

żτ (6)

Each time there is an integrator event or an input
event the corresponding column in ∂f

∂z
is updated.

2.3 QSS2 Properties

The properties of the QSS2 approach to ODE
propagation have been established in Kofman
(2002). Most importantly it is proven that the
QSS2 simulation converges to a region around
the equilibrium of the original continuous system,
where the size of the region is a function of the
selected quantum size. For practical applications,
the quantum can be selected small enough to
make the region small compared to system noise.
For the application of QSS2 in this paper the
benefits are:

• it is an efficient way to propagate a non-linear
model on-line

1 At initialisation, a static coupling analysis of the equa-

tion set is performed



• a byproduct of state propagation is a Jaco-
bian matrix for the system that can be used
for extended Kalman filtering.

• the QSS2 framework inherently supports
events at arbitrary times as compared to a
sample-based implementation

The QSS2 algorithm has been implemented in a
Java-based library for execution of discrete event
models, see (Alminde et al. 2006), which is based
on the Discrete EVent Specification (DEVS) (Zei-
gler et al. 2000).

3. REVIEW OF EXTENDED KALMAN
FILTERING

Kalman filtering and Extended Kalman Filtering
(EKF) are some of the most widely used methods
for estimation in linear and non-linear systems
respectively. This section presents the classical
EKF algorithm for non-linear systems, whereas
the next sections describes modifications to the
algorithm for use with quantised state systems.

3.1 Extended Kalman Filtering

The EKF algorithm propagates the state and as-
sociated covariance in intervals where no measure-
ments are available. When a measurement is avail-
able the algorithm calculates a state update and
reduced covariance matrix. Under the assumption
that noise is Gaussian and has zero mean then the
EKF is optimal in the sense that it minimises the
expected prediction error. The starting point is a
continuous non-linear model:

ẋ(t) = f(x, t) + w(t) w ∼ N(0,Q(t)) (7)

y(t) = g(x, t) + v(t) v ∼ N(0,R(t)) (8)

where w(t) and v(t) represent process noise and
measurement noise respectively, which is assumed
to follow a Gaussian distribution with zero mean
and which is assumed to be independent of the
process. For covariance propagation the EKF al-
gorithm requires partial derivatives of the process
and measurements:

F(x, t) =
∂f(x, t)

∂x
and G(x,t) =

∂g(x, t)

∂x
(9)

A covariance matrix P is associated with the
process, which is propagated in discrete time:

P(k + 1) = Φ(k)P(k)ΦT (k) + Q(k) (10)

where Φ(k) is the state transition matrix associ-
ated with F(x̂, t) evaluated in the current state es-
timate, x̂. The state-estimate is propagated from
the last sample point using the non-linear model,

e.g. using the well-known Runge-Kutta algorithm.
The discrete process noise term, Q(k), for the
equation above, is obtained by integration:

Q(k) = Φ(k)Q(kTs)ΦT (k) = (11)
Ts
∫

0

F(x̂, kT s + τ)Q(kTs + τ)FT (x̂, kT s + τ)dτ

When a new measurement, y, is available then the
state is updated according to (where superscript
”+” indicates the value after the update):

x̂+(k) = ˆx(k) + K (y(k)−g(x̂, k)) (12)

where K is the Kalman gain which is calculated
according to:

K = (13)

P(k)G(x̂, k)
(

G(x̂, k)P(k)GT(x̂, k) + R
)

−1

after the state correction the covariance is up-
dated to represent the increased knowledge of the
state inferred from the measurement:

P+(k) = [I− KG(x̂, k)]P(k) (14)

3.2 EKF Temporal Flow

Typical implementations of the EKF algorithm
assumes a constant sample time with measure-
ments arriving precisely at these sample times.
The propagation of the state and the covariance
in time is sketched on fig. 3.
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Fig. 3. Propagation of state (dashed) and co-
variance (solid) in the EKF algorithm. New
measurements arrive at sample times.

As time progresses the covariance and state equa-
tions are propagated using eq. (7) and (10) re-
spectively. At sample times new measurements are
processed according to eqs. (12), (13), and (14),
i.e. a state correction is calculated and applied
and the covariance is updated to reflect the added
state knowledge.



4. ADOPTION OF QSS2 BASED
STATE/COVARIANCE PROPAGATION

The EKF functionality is included as an extra
block in a QSS2 simulation, see fig. 4 compared
to fig. 1, where it can be seen how this block
is connected to the other blocks of the QSS
simulation. The figure shows an example for a
system with two states and one input.

f(x, u)

∫

∫

g(x)

(u, u̇) (ẋ1, ẍ1)

(ẋ2, ẍ2)

(x̄1,
¯̇x1)

(x̄2,
¯̇x2) (y1, ẏ1)

(y2, ẏ2)

Measurements

Ag(x̄)Af(x̄, ū)
State 

corrections

QSS EKF

Covariance

[y1...y2]

Fig. 4. Block diagram for a QSS based EKF im-
plementation. Dashed lines are vector/matrix
signals.

The central difference as compared to the sample-
based implementation is that state/covariance
propagation and measurement updates are not
synchronised at equally spaced sample times. This
is sketched on fig. 5, which should be compared to
the sample based implementation, see fig. 3.
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Fig. 5. Propagation of state (dashed) and covari-
ance (solid) in the EKF algorithm. Green
vertical lines are measurement events

The following subsections relate the figure to the
EKF algorithm and explain how the EKF equa-
tions are handled in the QSS/DEVS framework.

4.1 State and Covariance Propagation

The state is propagated using the QSS2 simu-
lation. This is fully analogous to typical imple-
mentation of the EKF where a forward Euler or
Runge-Kutta approach is utilised for state propa-
gation between discrete points in time.

Propagation of the covariance in the EKF requires
that partial derivative with respect to the state
can be found as indicated in eq. (9). This requires

that an expression for F(x, t) can be found ana-
lytically With the system model being propagated
as a QSS2 model this information is already main-
tained and can be applied by letting:

F(x, t) = Af (x̄, ū) ≃
∂f(x, t)

∂x
(15)

where Af (x̄, ū) is taken from the corresponding
QSS2 simulation, see eq. 6. This allows the EKF
to be easily applied to models where it is difficult
or impossible to obtain analytical expressions. Eq.
(10) can be calculated each time a new Af (x̄, ū)
matrix is received in the EKF block.

4.2 Measurement Update

When a new measurement is available a measure-
ment update is performed, this entails:

(1) The covariance is propagated to the current
time, as described above

(2) The Kalman gain is calculated as in eq. (13)
(3) State correction is performed using eq. (12)
(4) The covariance is updated due to the mea-

surement, i.e. eq. (14)

In order to calculate the Kalman gain the partial
derivative of the measurement equations with
respect to the state must be available; the same
approach as used for covariance propagation is
used here by letting:

G(x,t) = Ag(x̄, ū) ≃
∂g(x, t)

∂x
(16)

The state corrections are calculated by eq. (12)
and are applied to the integrator blocks as a state
reset event, i.e. the integrator adopts the value
and solve eq. (5) for the next event-time or set
the event-time to zero if the correction is large
enough to make the difference exceed the criteria.

4.3 Implementation

Implementation of the quantised filter requires a
QSS2 simulation to be setup, see fig. 1, with the
process model as the driving function, f(x), and
the sensor model as the output function, g(x).
The added EKF functionality is achieved by three
function calls; first the EKF block is constructed:

EKF ekf=new EKF(double cT ,int nM,

Matrix P, Matrix Q,

Qss2Static mMap);

where cT is a guaranteed minimum time between
covariance propagation, nM is the number of as-
sociated measurements, P is the initial covariance
matrix, Q is a matrix of continuous time process
noise variances, and mMap is a reference to the



function, g(x). Hereafter references to integrator
blocks in the model is supplied:

ekf.registerState(Qss2ResetIntegrator[]

ints);

where ints are integrator references. Measure-
ments are registered using the call for each:

ekf.registerMeasurement(int[] rows,

Matrix R);

where ints are row-indexes for g(x) for the cor-
responding measurement and R is an associated
matrix of measurement noise variances.

The discussion of the function calls above serves to
demonstrate how simple it is to add estimation to
a QSS2 model; This allows a user to concentrate
on the modelling part of the task rather than
implementation of standard algorithms.

5. SIMULATION CASE DESCRIPTION

As a case study we will consider attitude and an-
gular rate determination for a Deep Space Probe
(DSP), which is equipped with two sensors that
produce a unit vector in the body frame of the
craft to the sun and a fixed bright star respec-
tively. See fig. 6.

Sun

Guide−star vector

Sun vector

Fig. 6. Attitude information by measuring the
direction to the sun and a bright guide star

5.1 Dynamical and Kinematical Model

The dynamical model has the following form:

Jω̇ = −[ω×]Jω + ndist (17)

where ω = [ω1 ω2 ω3]
T are the body rates, [ω×]

is a matrix representing the gyro-scopic coupling:

[ω×] =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (18)

and the parameter J is the inertia matrix:

J =





3 0 0
0 5 0
0 0 3



 (19)

The kinematical description of the DSP will be
based on Euler angles, i.e.: (s for sin(·) and c for
cos(·))

θ̇ =
1

cθ2





cθ2 sθ1sθ2 cθ1sθ2

0 cθ1cθ2 −sθ1cθ2

0 sθ1 cθ1



ω (20)

The disturbances, ndist, are assumed Gaussian
distributed with standard deviation of σm = 10−4.

5.2 Sensor Model

The DSP utilises a simple sun-sensor and star-
sensor in cruise mode which are mounted on the
x- panel of the spacecraft, see fig. 6. Noise for both
sensors are assumed to be Gaussian distributed
with zero mean and with the following variances
on all axises with the stated update rate.

• Sun-sensor: σs1
= 0.1o @ 0.2Hz

• Star-sensor: σs2
= 1o @ 1Hz

A sensor model for both sensors can be described
by the relation:

y = C321(θ) ·

(

XDSP − Xtarget

|XDSP − Xtarget|

)

+ v (21)

where C321(θ) is the direction cosine matrix asso-
ciated with a 3-2-1 Euler rotation sequence that
rotates a vector from an assumed inertial frame to
the body frame, XDSP is the position of the probe
and XDSP is the position of the sun or guide star
respectively. v is following a Gaussian distribution
with standard deviations σs1

and σs2
respectively.

It should be noted that each sensor does not pro-
vide full observe-ability since, for vector measure-
ments, the rotation around the sensor boresight
cannot be inferred from a single measurement.

6. SIMULATION RESULTS

This section presents simulation results for the
deep space probe. A truth-model was imple-
mented in Simulink and the simulated measure-
ments were processed by the QSS/EKF filter and
then compared to the truth-model states.

The estimator has an initial attitude error of
θerr = [−0.1 0 0]rad and an initial angular rate
error of ωerr = [0.002 0 0.005]rad/s. The QSS2
implementation of the DSP model utilises quanta
of ∆Q = 10−5 rad for the attitude states and
∆Q = 10−6 rad/s for angular velocity states.

Fig. 7 and 8 show the estimated values versus
truth values for attitude and angular rates re-
spectively. It is clear from the figure that the
attitude estimates converge quickly to the truth-
model and that the angular rates also converge
albeit somewhat slower as expected due to poorer
observe-ability.
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Fig. 7. Attitude estimation. Thick lines are from
the truth model and thin lines are estimator
outputs
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Fig. 8. Angular rate estimation. Thick lines are
from the truth model and thin lines are
estimator outputs

Fig. 9 and 10 show a comparison between 2-
sigma bounds of the propagated covariance vs. the
absolute of the estimation error for attitude and
angular rates respectively.
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Fig. 9. Performance for attitude estimation. 2-
sigma bounds vs absolute estimation error

It is evident that the filter provides estimates that
are consistent with the predicted covariance of the
filter. The estimation task executes in approxi-
mately 250 times real time on a contemporary
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Fig. 10. Performance for angular rate estimation.
2-sigma bounds vs. absolute estimation error

computer. By varying the quanta it has been
found that the quantum for each state should be
chosen one magnitude lower than the expected
covariance of that state in order to guarantee
consistent results.

7. CONCLUSIONS

This paper has presented how quantised state sim-
ulation can be used for extended Kalman filtering
and how it enables Jacobian free estimation for
non-linear models. A case study of a deep space
probe has demonstrated that the filter operates
consistently and has demonstrated how easy it is
to setup the filter in the QSS2/DEVS framework
once a system model is available.
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