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Abstract: This paper presents a new method for control of complex MIMO plants
based on a quantised state description. The control algorithm solves a minimisation
problem for a set of user defined convex control objective functions with the plant
dynamics as a constraint. The solution makes use of local linear models that
are effectively calculated by propagating the state on-line using a quantised state
description. The method is demonstrated on a model of an autonomous underwater
vehicle.
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1. INTRODUCTION

Models for intelligent autonomous systems, whether
land, sea or space based, are in general complex
in terms of the dimension of the state-space, the
number of in- and outputs, and the non-linearities
in the driving equations.

This complexity makes it inherently difficult to
design model based controllers for the high-
dimensional non-linear plants using analytic meth-
ods such as e.g. back-stepping or sliding-mode
control, see (Khalil 2000). Therefore, such prob-
lems are often attacked by a combination of lin-
earisation and decoupling techniques in which
control of the complex plant is made into one or
more less complex problems.

For instance in Healey and Lienard (1993) con-
trollers for an Autonomous Underwater Vehicle
(AUV) are designed by separating the complex
Multiple-Input-Multiple-Output (MIMO) system

into three single-input-single-output (SISO) sys-
tems for which controllers are designed using a
sliding mode approach. In the simplification from
the MIMO system to the assumed decoupled SISO
systems some actuators are left unused.

This paper presents a control algorithm for MIMO
plants where the control algorithm on-line solves
a minimisation problem for a set of user specified
convex control objective functions with the plant
dynamics as a constraint. The approach resem-
bles Model Predictive Control (MPC), but the
application of a quantised state systems approach
allows the optimisation problem to be efficiently
reformulated based on local linear models which
can be minimised with a simple algorithm. This
help allowing input sequences to be calculated
in real-time, which is often not feasible, see e.g.
(Oort et al. 2006). The approach is demonstrated
through simulations of an AUV model based on
Healey and Lienard (1993).



The paper is organised as follows; First an intro-
duction to quantised state systems is presented in
Section 2, hereafter the proposed control method
is developed in Section 3. Section 4 describes the
AUV model and describes the control objective
functions used and the acquired simulation re-
sults. Finally, Section 5 presents conclusions.

2. QUANTISED STATE SYSTEMS

Quantised State Systems (QSS) is a recent ap-
proach for propagating ordinary differential equa-
tions by decoupling the states and transforming
the system into a discrete event system, where
event times are dynamically decided using a quan-
tum separation criteria between two models of dif-
ferent order for each state. The approach was de-
veloped by Kofman (2002). This paper will make
use of the QSS2 algorithm in which the event
time is decided using the difference between a
first order and second order model. This technique
is reviewed in the remainder of this section, and
further details can be found in Kofman (2002).

The QSS2 algorithm simulates systems of the
following form, with state vector x of dimension
n and input vector u of dimension m:

ẋ = f(x,u) (1)

y = g(x) (2)

The QSS2 algorithm integrates the state and pro-
duces the output g(x) by decoupling the system
into event-communicating software entities repre-
senting functions and integrators, see fig. 1.
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Fig. 1. Structure of a QSS2 simulation. Thick lines
represent vector signals. This figure represent
a system with two states

The following describes how the integrator blocks
and function blocks work, respectively.

2.1 QSS2 Integrators

The integrators maintain a first order and second
order model of the state trajectory as a function
of time since the last update, τ = t− tk.

x̄i(τ) = x̄i(tk) + ¯̇xiτ (3)

xi(τ) = xi(tk) + ẋiτ +
1

2
ẍiτ

2 (4)

where x̄i ∈ R and xi ∈ R are the i’th states in the
first- and second order models, respectively.

The second model is updated whenever an exter-
nal event occurs, i.e. new information from the
block representing f(x,u), while the first model
x̄i(τ), is updated when the difference between the
two models exceeds a preset quantum, i.e. when:

|x̄i(τ) − xi(τ)| > ∆Q (5)

where ∆Q is the chosen quantum. At each event
the next internal event time is calculated by
solving for τ in eq. (5).

The above scheme is sketched in fig. 2, which
provides an example trajectory. Here, it can be
seen how the models for x̄i(τ) and xi(τ) are
allowed to evolve independently whereafter upon
reaching the difference ∆Q are reset to the same
condition.
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Fig. 2. A sample QSS2 trajectory

With this formulation one can think of (x̄, ¯̇x) as an
operating point, or rather an operating trajectory,
with the guarantee that it is correct to within the
chosen quantum within the time interval until the
next event.

2.2 State and Output Maps

Whenever an integrator produces a new operating
trajectory, (x̄, ¯̇x), this is communicated to the
blocks that are connected to the output of the
integrator. For fig. 1 this means f(x,u) and g(x).
These function blocks then calculate new outputs
which depend on the input variable 1 .

In order to calculate the second derivative; the
block numerically derives a matrix with second
order information as in the first order Taylor ex-
pansion of f(z) with z = [xT uT]T (equivalently
for g(x)):

f(z(τ)) = f(z(tk)) +

[

∂f

∂z
(z(tk))

]

żτ (6)

Each time there is an integrator event or an input
event the corresponding column in ∂f

∂z
is updated.

1 At initialisation, a static coupling analysis of the equa-

tion set is performed



2.3 QSS2 Properties

The properties of the QSS2 approach to ODE
propagation have been established in Kofman
(2002). Most importantly it is proven that the
QSS2 simulation converges to a region around the
equilibrium of the original system, where the size
of the region is a function of the selected quantum
size. For practical applications, the quantum can
be selected small enough to make the region small
compared to system noise.

For the application of QSS2 in this paper the
benefits are:

• the operating trajectory is updated more
often the more non-linear the model is

• local linearised models of the system is effi-
ciently produced by the simulation

• the time interval of the local linearised model
is known as the time until the next scheduled
integrator event

The algorithm has been implemented in a Java-
based library for execution of discrete event mod-
els, see (Alminde et al. 2006).

3. OBJECTIVE DIRECTED CONTROL

This section develops the control algorithm. First,
control using a single control objective will be
described and secondly it will be described how
this can be extended to multiple control objectives
controlled by non-overlapping sets of actuators.

3.1 Single Objective Control

For control purposes we will augment the system
with a control objective in the form of a scalar
convex control objective function which maps the
state to a scalar. The control system looks like
(v(x) here takes the place of y of the previous
section):

ẋ = f(x,u) (7)

v = v(x) (8)

The control problem is to find input signals that
minimise v = v(x), where v is an appropriate per-
formance measure, e.g., measuring the weighted
distance to a desired output value. The QSS2 algo-
rithm provides the Hessian ∂f

∂z
(z(tk)), see eq. (6),

which can be divided into two matrices A(x,u)
and B(x,u) representing state sensitivity and in-
put sensitivity respectively. Similarly for v(x) the
QSS2 algorithm provides a state sensitivity matrix
E(x), which is the Jacobian of eq. (8). These
matrices are communicated to the controller, and
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Fig. 3. Control structure. Thick lines are vector
signals. Dashed lines are matrix signals. This
figure has two states and one input

the controller output u̇ is fed to the plant through
a set of integrators, see fig. 3.

The choice of letting the controller control the
input slopes u̇ rather than u directly, is due to
the fact that the matrices used in the calculation
are based on a fixed operating point (x̄, ū), so
any immediate change in the control signal would
render the matrices incorrect, whereas by control-
ling through the slopes the QSS2 mechanism for
automatically switching operating points is intact.

Based on the information in the matrices we can
formulate the following local model for ẍ and v̇ in
the operating point of (x̄, ū):

ẍ = A(x̄, ū)ẋ + B(x̄, ū)u̇ (9)

v̇= E(x̄)ẋ (10)

The control strategy is to provide an input signal
that keeps v̇ negative. To this end we need to see
how v̇ is affected by the control vector u̇ over a
time horizon τ . This is achieved by inserting a
solution to eq. (9) over the time horizon into the
expression for v̇, i.e. eq. (10):

v̇(τ, u̇) = E(x̄) (Φ(x̄, ū, τ)ẋ + Γ(x̄, ū, τ)u̇) (11)

where Φ(x̄, ū, τ) is the state transition matrix:

Φ(x̄, ū, τ) = I +
∞
∑

k=1

Ak(x̄, ū)τk

k!
(12)

and Γ(x̄, ū, τ) is the input transition matrix:

Γ(x̄, ū, τ) =

∞
∑

k=0

Ak(x̄, ū)τk+1

(k + 1)!
B(x̄, ū) (13)

However, since fig. 3, introduces the new state u,
we also need to penalise this state in the control
objective function in order to ensure that con-
trol signals approach zero as the control objec-
tive function is minimised. To this end we use
a quadratic cost term: (u− uf )P(u − uf ), with
parameters given by the matrix P = PT > 0, and
possible preset input levels, uf . Augmenting to eq.
(11) the control objective derivative becomes:

v̇∗( τ , u̇,u) = E(x̄)(Φ(x̄, ū, τ)ẋ



+ Γ(x̄, ū, τ)u̇) + τ(u − uf )Pu̇T (14)

In order to minimise eq. (14) we can only minimise
terms depending on, u̇. Therefore, we neglect
terms not depending on u̇, and end up with the
following term that we will denote, c:

c(τ,u)u̇ = (E(x̄)Γ(x̄, ū, τ) + τ(u − uf )P) u̇ (15)

The minimisation will be performed over a control
horizon that corresponds to the next scheduled
integrator output event in the QSS2 simulation,
since it is known that the matrices used in the
above calculations are constant within this time
horizon. Furthermore, since it is not possible to
evaluate the infinite sum of eq. (13), it is approx-
imated using the first n terms, where n is the
number of states in the system. This choice en-
sures that minimisation includes full information
about the state controllability. The minimisation
problem can now be stated as:

minimize c(τ,u)u̇ (16)

subject to:

u̇ � u̇max

u̇ � u̇min

where the constraints u̇max and u̇min are com-
puted in each control step to satisfy both rate
constraints and saturation constraints over the
control horizon. Denoting the minimiser u̇∗ it can
be seen that due to the simple dot-product form
of the problem then each component, index i, of
u̇∗ can easily be found as:

u̇∗i =

{

u̇min,i
if ci > 0

u̇max,i if ci < 0
(17)

The minimiser u̇∗ is also the minimiser of eq. (11)
in terms of the parameter u̇ and hence represents
the input that gives the most rapid decay of the
control objective function. If the minimiser results
in a positive number for v̇ in eq. (11), then there
is not enough control authority to stabilise the
system at this operating point, but the controller
will provide the control input that gives the least
possible growth of the objective function.

3.2 Multiple Objective Control

An extension to multiple objective control is pos-
sible in cases where the actuators can be divided
in complementary sets assigned to one objective
function. For multiple objectives the control ob-
jective function will no longer be scalar, i.e.:

v(x) =











v1(x)
...

vl(x)

(18)

where each scalar function vk(x) of v(x) is as-
signed an actuator set ak such that:

l
⋂

k=1

ak = ∅ (19)

For multiple objective control eq. (16) and eq.
(17) are solved independently for each control
objective function.

3.3 Control Procedure

The following list of actions gives an overview
of how the control will be applied to the QSS2
system.

(1) The QSS2 model executes the next event and
distributes information. New matrices A,B
and E are calculated in the process

(2) The controller solves eq. (17)
(3) New input slopes u̇ are applied
(4) The QSS2 model re-evaluates trajectories

event times given new inputs
(5) Repeat from step 1

Control set allocation, i.e. separating the controls
into non-overlapping sets, ak, can be changed
dynamically with no overhead. This is interesting
for plants where actuators availability may vary,
e.g. in the presence of faults.

4. CONTROL OF AN AUTONOMOUS
UNDERWATER VEHICLE

For the simulation study of the control method
the AUV model described in Healey and Lienard
(1993) will be used. The AUV is 5.3m long and
weighs 5.4T. A sketch of it is shown in fig. 4.

Fig. 4. A sketch of the Naval Postgradu-
ate School Autonomous Underwater Vehicle
(from (Healy and Lienard) (1993))

The model contains 12 states, six of which are
described in a body-fixed coordinate system and
six described in an assumed inertial North-East-
Down frame (NED). The body fixed states are:

V(t) = [u(t), v(t), w(t), p(t), q(t), r(t)] (20)

which respectively represent: surge speed, sway
speed, heave speed, roll rate, pitch rate, and yaw
rate. The state variables in the NED frame are:

η(t) = [x(t), y(t), z(t), φ(t), θ(t), ψ(t)] (21)



which respectively represent Earth fixed: x-, y-,
and z-position, roll-, pitch-, and yaw-angle. The
AUV has six controllable actuators:

u(t) = [δr(t), δs(t), δb(t), δbs(t), δbp(t), n(t)](22)

which respectively are: rudder, stern plane, top
and bottom bow plane, starboard bow plane, port
bow plane, and propeller speed. All control planes
saturates at ±20o and the propeller can run at
between 0 and 1500 RPM.

The model takes into account the following effects:

• Rigid body mass and added mass due to
hydrodynamics

• Coriolis and centripetal forces and torques
including added mass effects

• Hydrodynamic dampening forces and torques
• Propulsion forces and control torques
• Gravitational and buoyancy forces and torques
• The kinematical relation between the body

and NED frame

The model is included in the ”Marine GNC Tool-
box” (Fossen 2002). The model contains around
120 constant parameters and consists of 30 non-
linear equations and four integrals to be solved
numerically for each simulation step (cross-flow
drag coefficients). The model has singular points
in θ = ±π/2 due to the Euler formulation of
kinematics, and the thrust model is singular in
u = 0. The AUV is neutrally buoyant and is
passively roll and pitch stable.

4.1 Control Objectives and Parameters

As a simulation case we will present the results
from running a multiple objective controller for
the AUV. The control objectives and associated
actuators are described in the following. Variables
with subscript r are references.

Speed Control objective function for surge speed:
v1 = 10(u − ur)

2 and is assigned the actuator-
set: a1 = {n}

Heading Control objective function for heading:
v2 = 2(ψr − ψ)2 and is assigned the actuator-
set: a2 = {δr, δb}

Depth and pitch A control objective function
for depth and pitch stabilisation : v3 = (z −
zr)

2 + 3(q)2 and is assigned the actuator-set:
a3 = {δs, δbs, δbp}

The third control objective is designed to control
the depth and at the same time avoid oscillations
of the lightly dampened pitch axis. With the above
choice of control objectives, way point tracking
can be accomplished by a guidance controller that
supplies new references: ur, ψr, and zr each time
a way-point has been reached.

Actuator saturation limits are as specified previ-
ously and the rate constraints have been set to
u̇max = −u̇min = [0.2 0.4 0.2 0.4 0.4 1.2] with
units of rad/s for the rudders and RPM/s for the
propeller shaft. A control cost matrix has been
found as: P = diag([0.2 0.1 0.2 0.1 0.1 0.001])

Since the model does not have a pure integrator
between the propeller shaft input and the surge
speed output, it is necessary to either set the
control cost for the propeller shaft actuator to zero
in order to provide robust set-point tracking or
include a feed-forward term as introduced in eq.
(14). The latter option has been chosen here as it
provides faster disturbance rejection than the free
integrator approach.

4.2 Simulation Results

The simulation case shown in the following graphs
is for a combined maneuver where the AUV should
dive 20m, while turning 0.9 rad, and increase the
surge speed from 1.1m/s to 1.5m/s.
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Fig. 5. Surge speed response and normalised depth
response

Fig. 5 shows the results for the surge speed and
normalised depth. It can be seen that both con-
verges to their reference value. The initial dynam-
ics of the surge-speed should be compared to the
stern plane position of fig. 7; it is clear that the
stern plane has a large effect on the surge speed.

The angular position during the maneuver is
shown in fig. 6. It can be seen that the heading
control objective is handled very well even as the
AUV is speeding up and pitching at the same
time. The pitch response is negative at first in
order to carry out the ordered dive, where after
it converges to zero. Almost no roll response is
evident, confirming that passive roll stabilisation
is adequate.

Finally, the control surface deflections from zero is
plotted in fig. 7. The stern rudder initially makes a
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large deflection and then converges to zero, at the
same time the top-bottom plane is virtually not
used. This is due to the fact that by its physical
position relative to the centre of mass it has very
little control authority over the yaw-axis.

The dive is controlled foremost by the stern plane,
but is also helped by the bow port and starboard
planes. This clearly demonstrates how the control
method can make use of redundant actuators in
order to maximise performance.

On a contemporary lap-top (1.6GHz) the con-
troller executes 35 times faster than real-time and
profiling shows that 36% is used for QSS2 simula-
tion and 52% for control calculations, the remain-
ing 12% is spent in the discrete event execution
framework of Alminde et al. (2006) in which the
controller is implemented. The controller performs
a total of 15334 control calculations corresponding
to a mean update rate of 51 Hz.

5. CONCLUSIONS AND FUTURE WORK

This paper has described and demonstrated a
new control approach that in many ways resem-

ble model-predictive control, but is making use
of a quantised state approach to provide local
linear models. This makes minimisation of one
or more control objective functions efficient and
automatically selects appropriate sampling times
dependent on the system dynamics.

The method has been applied on a model of an
autonomous underwater vehicle and it was found
that it was possible to design a well-performing
controller which could make use of all available
actuators, including redundant actuators.

The presented results are for open-loop control.
Future work will focus on methods for injecting
state corrections into the integrators as supplied
by e.g. an extended Kalman filter algorithm in
order to achieve closed loop control.

A rigorous comparison with classical gain schedul-
ing methods, for particular classes of systems,
will be highly relevant. Since the QSS2 method
provides bounds on the trajectory errors and thus
automatically regulates how often system param-
eters and controller gains should be re-computed,
it is likely to operate well under circumstances
where normal gain scheduling methods also work,
possibly providing better performance and less
computational cost than the classical methods.
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