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Abstract. The wind speed has a huge impact on the dynamic response of wind turbine.
Because of this, many control algorithms use a measure of the wind speed to increase
performance, e.g. by gain scheduling and feed forward.

Unfortunately, no accurate measurement of the effective wind speed is online available from
direct measurements, which means that it must be estimated in order to make such control
methods applicable in practice.

In this paper a new method is presented for the estimation of the effective wind speed.
First, the rotor speed and aerodynamic torque are estimated by a combined state and input
observer. These two variables combined with the measured pitch angle is then used to calculate
the effective wind speed by an inversion of a static aerodynamic model.

1. Introduction
With the increasing competition in the wind energy market it is becoming very important to
have control algorithms with which the structural fatigue is minimised without compromising the
energy production. In contrast to many other control problems, the dynamics of wind turbines
are driven by a disturbance, namely the wind speed. This means that the wind not only excites
oscillations in various structural components but is also one of the main variables to select the
operating condition of wind turbines – together with different control strategies like the rating
of generator speed and power production.

One of the ways to handle the variations in operating conditions is the use of gain scheduling
or adaptive control [1, 2, 3, 4, 5]. In these control methods, the controller variables are updated
online on the basis of scheduling variables that are measured or constructed from measured
variables. In these control methods it is very important that all operating conditions can be
determined uniquely from the scheduling variables. This means that in the case of wind turbines,
all variables determining the aerodynamics must be used, e.g. wind speed, rotor speed and pitch
angle. In practice the number of variables is usually reduced by assuming a certain operating
trajectory. Typically the pitch angle is chosen in full load operation and the generator speed is
used in partial load operation as in [1, 6, 7]. Alternatively the controller is scheduled on wind
speed [8, 9, 3], which has the advantage that the same scheduling variable can be used over the
entire operating envelope. However, the wind speed is not directly available and must therefore
be estimated. Further, if combined with pitch angle and generator speed it is also possible to
schedule for operating conditions outside the nominal trajectory, which can be advantageous in
the context of derating strategies, extreme weather conditions, fault situations, etc.

Another important reason for considering efficient estimation of the wind speed is the use of
feed forward control. The variations in wind speed not only changes the dynamic response of the
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wind turbine but also the steady state values of important signals like shaft torque, tower thrust
etc. To compensate for this the references for the controller is generated to give appropriate
steady state values and to give a fast response, a nonlinear feed forward term is usually included
from wind speed or aerodynamic torque to the relevant control signals [10, 11, 7, 12]

Both examples above indicate that there is a need for precise estimates of the wind speed in
order to get a good performance in the overall control loop. It is assumed that the estimated
wind speed will be used to schedule a controller with the main purpose of tracking generator
speed references, tower thrustwise movement, etc. In this context, the main drivers of the
variations in set point and dynamics are the torque, Qa, on the main shaft and the thrust, Ft,
on the tower. These two variables can be described by static functions of rotor speed, ωr, pitch
position, β, and effective wind speed, v, as in (1) with the effective wind speed being defined as
the spatial average of the wind field over the rotor plane with the wind stream being unaffected
by the wind turbine, i.e. as if the wind turbines was not there [13].

Qa =
1
2

ρ π R2 v3

ωr
cP (v, λ) (1a)

Ft =
1
2

ρ π R2 v2 cT (v, λ) (1b)

The constants, ρ, and R, describe respectively the air density and rotor radius and λ is the tip
speed ratio defined as λ = ωr R

v . The purpose is then to estimate the effective wind speed, v, and
it has been chosen to use (1a) together with a dynamic model of the drive train in the observer
design.

In the literature many different algorithms have been investigated. The most simple algorithm
assume that there is a static relation between electrical power production and the effective wind
speed [8, 14, 15]. This assumption means that for example the energy stored in the speed-up
of the rotor is neglected – which is a very crude assumption. In [15] it is concluded that using
dynamic models significantly improves the observer performance, and it is therefore estimated
that the use of static relations does not give satisfactory performance.

As a solution to the above mentioned issues, most papers in the literature propose a method
which utilises a simple drive train model as in (2) with Qg as the generator reaction torque and
Qloss being a loss term describing for example friction. [10, 16, 7, 11]

J ω̇ = Qa −Qg −Qloss (2)

This model assumes that the drive train is infinitely stiff which means that drive train oscillations
are neglected and that the lag between rotor acceleration and generator acceleration in case of
gusts is also neglected. The first issue can most likely be handled by a notch filter at the
drive train eigenfrequency, whereas the second issue will need further investigations in order to
understand its significance. The observer algorithm is simply to calculate Qa from measurement
Qg, differentiated measurement ωg, and modelled loss term, Qloss. In practice this method is
very sensitive to measurement noise as indicated in [11]. It is therefore necessary to low pass
filter either ωg or the estimated output as in [16]. This approach imposes a very particular
structure of the observer in order to reject measurement noise. It is well-known that a low pass
filter will introduce a time delay in the estimated quantity and the particular observer structure
can potentially lead to a poor trade-off between noise rejection and time delay. It is therefore
as in [11] estimated that a better performance can be achieved by using dynamic observers.

Dynamic observers for estimating the effective wind speed has not been as intensively
investigated as the above mentioned methods. The main trend in the design of dynamic
estimators has been either to design a linear Kalman filter for estimating the aerodynamic torque
and then calculate the effective wind speed using (1a) [11]. The alternative is to combine a linear
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model of the drive train with the nonlinear aerodynamic model and use nonlinear algorithms to
estimate the wind speed directly – either by online linearization (extended Kalman filter) [15]
or by using more dedicated algorithms [17].

The main advantage of all three algorithms is that they are all dynamic observers, which
means that the filtering is designed via the cost function for the design algorithm. However,
they all have the disadvantage that none of them are suited directly for input estimation – only
state estimation. To counter this, a model of the input is created with the unknown input as a
state variable. In the most simple form, Qa, can be assumed to vary very slowly compared with
the observer bandwidth. Then combined with the simple drive train model (2), the augmented
model becomes [

ω̇

Q̇a

]
=

[
0 1

J
0 0

] [
ω
Qa

]
+

[
− 1

J
0

]
Qg +

[
− 1

J
0

]
Qloss (3)

The dynamic observer is then constructed by combining the augmented model with an update
term, L·(ω−ω̂), that updates the state vector based on the estimation error in measured output.
This means that the observer is of the form (4) with the accent ˆ denoting estimated variables[ ˙̂ω

˙̂
Qa

]
=

[
0 1

J
0 0

] [
ω̂

Q̂a

]
+

[
− 1

J
0

]
Qg +

[
− 1

J
0

]
Qloss +

[
L1

L2

]
(ω − ω̂) (4)

It is clear that there are two major issues in this way of estimating the unknown input. First
of all it has to be chosen, which model to use for the aerodynamic torque. In the example,
the most simple form, Q̇a = 0 was chosen, but it can be extended to models that reflect the
expected spectrum of Qa. However, the difficulty in this part is to determine what spectrum
to use, because wind turbines can encounter very different wind spectra depending on their
respective location, e.g. plains, mountain areas, offshore, etc. A possible approach could be a
self-tuning procedure, which would slowly identify location specific parameters and use these
to adapt a wind spectrum model. This, however, would involve a comprehensive collection of
representative data and is outside the scope of this paper.

The other issue is the tradeoff between state estimation and input estimation. When there
is an estimation error in the measured variable, ω − ω̂, it must be identified how much this
error shall affect the update of the state vector, ω̂, and how much the unknown input shall be
updated. This is essentially the tradeoff between the sizes of L1 and L2. If L1 becomes too large
compared to L2, Qa is not updated sufficiently leading to small estimation error in the state
vector, but high estimation error in the unknown input, Qa. On the other hand, if L1 becomes
too small compared to L2, the state vector is not updated correctly. Then the estimation error,
ω − ω̂ will increase (not necessarily to instability) and give poor estimates in both state vector
and Qa. Besides the balance between L1 and L2, their size must also be balanced between time
propagation and time update. In the Kalman filter approach this is done in an optimisation
function which minimises the mean square error of the state (and unknown input) estimate
weighted by constant scalings.

To summarise: The simplified method of using steady state equations is very easy to design,
but does not give sufficient estimation quality. The method that uses differentiation of generator
speed is in its direct form also very simple to design, but amplifies to a large extend the
measurement error and drive train oscillations. This problem can be handled by proper filtering
which, however, introduces a time delay in the process and complexity in the design. Finally,
the observer based estimator has the major advantage that filtering is included in the algorithm.
The disadvantage is on the other hand that the complexity in the algorithm is increased –
especially regarding the choice of model for the unknown input and the weighting between state
estimation and input estimation.
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This paper presents a method that is quite similar to the observer based method presented
above. The major difference is that instead of augmenting the state model as in (3), the state
and input estimation problem is split into two separate problems. A dynamic observer based
on the Kalman filtering approach is designed for the state estimation and an input observer
based on ideas from tracking controllers is designed for estimation the aerodynamic torque. In
this setting it is expected that the tracking performance will be significantly better than the
steady state estimation method. Further it is expected that the tradeoff between noise rejection
and time delay is improved when compared with the method using differentiation of measured
generator speed. Finally it is expected to have similar performance to other dynamic observers
in the literature. However by splitting the observer problem into a state estimator and an input
estimator, the design problem is simplified as it will be illustrated and the choice of wind model
is transformed into the choice of observer structure for the input estimator – from experience in
tracking controllers, this problem is efficiently solved by a PID structure.

In Section 2 we present a method for the design of an observer to estimate the angular velocity
of the rotor and the aerodynamic torque acting on the low speed shaft. Then in Section 3, these
two variables together with measured pitch position are used to calculate the effective wind
speed by inversion of the aerodynamic model. Finally in Section 4 the conclusions are given.

2. Estimation of Rotor Speed and Aerodynamic Torque
In this section we take advantage of methods from the field of state estimation and combine
them with ideas from tracking controllers to obtain what is known as disturbance estimators
[18]. In the following it is assumed that the drive train to a sufficient level of accuracy can be
described by two inertias interconnected by a spring and damper and with viscous friction on
each inertia. The external forces to this 2-DOF system is then the aerodynamic torque, Qa, on
the slow speed shaft and generator reaction torque, Qg, on the high speed shaft. This results
in the system of equations in (5) which for simplicity in the notation will be referred to via the
general state space form (6) with x =

[
ωr ωg θ∆

]T as the state vector.

Jr ω̇r = Qa −Br ωr − µ (ωr − ωg)−K θ∆ (5a)
Jg ω̇g = −Qg −Bg ωg + µ (ωr − ωg) + K θ∆ (5b)

θ̇∆ = ωr − ωg (5c)

ẋ = A x + Br Qa + Bg Qg (6a)
ωr = Cr x (6b)
ωg = Cg x (6c)

2.1. Dynamic observer design.
For the observer design we assume that the generator speed, ωg, and generator torque, Qg, is
available through measurements. Let us for a moment assume also that the aerodynamic torque
is available through measurements. Then we are left with only the state estimation problem.
The state estimator is designed by propagating the input signals, Qa and Qg, through (5). The
state vector is furthermore updated by a scaling, L, of the error in estimated output as described
in (7)

˙̂x = A x̂ + Br Qa + Bg Qg + L (ωg − ω̂g) (7a)[
ω̂r

ω̂g

]
=

[
Cr

Cg

]
x̂ (7b)
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The observer gain, L, can be designed using a number of different methods. It has been chosen
to use the Kalman filtering approach, which is a method that minimises the expected value of
the square of the estimation error: E[(x− x̂)2].

In practice, the aerodynamic torque, Qa, is not measurable, which means that we need to
extend the observer described by (7) with a term to estimate Qa. In the literature this issue is
handled by augmenting the dynamic model by a model of the unknown input to estimate as in
(3) – typically with the 2-DOF drive train model instead of the 1-DOF model in the example.

In contrast to the methods in the literature, it has been chosen to split the observer design
into two observers operating in a cascaded coupled setup. The inner part is a Kalman filter
designed along standard lines on the basis of (7), i.e. under the assumption that Qa is available.
The outer loop is then setup as a tracking configuration with ωg as the tracking variable and
Q̂a as the “control signal”. The “controller” has been chosen to be of the PI structure in order
to have an integral term taking care of the asymptotic tracking and a direct gain handling the
faster variations. The complete observer structure is then as shown in Figure 1.

6
ωg

e
−
+

PI(s) -Q̂a Br
?

Qg- Bg
6

e+ -

L

?e+ -
∫

- Cg -ω̂g

�A
6

-

?

Figure 1. Block diagram of observer structure.

This approach has some resemblance to the observer with the augmented wind model because
the PI controller can be considered a known wind model with which the model is augmented.
The integral term corresponds in this context to the typical wind model, Q̇a = 0, but with the
proportional term a quicker response is ensured. In this context it should be noted that by
increasing the proportional gain it corresponds to an increase in L in the input direction. This
corresponds to increasing the bandwidth of the outer loop to something close to the bandwidth
of the inner loop which can potentially lead to instability. Because of this issue, the stability of
the interconnection must always be checked a posteriori to the observer design.

The major advantage of this method for observer design is that the split into two
interconnected observers lead to a two-step design method. First a state estimator is designed
to have a sufficient bandwidth and noise rejection as if the aerodynamic torque is available.
Afterwards the input observer can be designed by investigating different structures – with the
constraint that there is a sufficient gap in bandwidth between the inner and outer loop.

In the case of estimation of the aerodynamic torque, a PI controller is a natural choice for
estimation of the effective wind speed. Process knowledge can also be used to improve the
estimation process. It is well-known that the generator speed might suffer from oscillations at
the drive train eigenfrequency without having noticeable oscillations in the aerodynamic torque.
Because of this it might be advantageous to filter the signal to the PI observer at the drive
train eigenfrequency without filtering the signal for the state estimator. In this way the state
estimator still estimates the rotor speed correctly, and the noise on the estimate of aerodynamic
torque is reduced. Also gain-scheduling of the PI observer can be introduced in order to take
into account that there might be different requirements to bandwidth in high wind speeds as
opposed to low wind speeds.

2.2. Simulation results
The performance of the observer designed in Section 2.1 is tested against an estimator designed
on the basis of solving the differential equation (2) by differentiating the generator speed
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measurement. In this estimator, the loss term is described by viscous friction, i.e. Qloss = Br ·ω.
Further the rotor rotational speed, ω is assumed equivalent to the generator speed with the drive
train eigenfrequency filtered out. The differentiation will amplify the measurement noise and
a first order low pass filter will be used to smoothen out the estimation. This leads to the
estimator structure in Figure 2 with T as the tuning parameter for the tradeoff between time
delay in the estimation and noise rejection.

-ωg - 1
N

-ω̂r Br
-+e- 1

T s+1
-Q̂a

-Qg
N

?

- J d
dt

6

Figure 2. Block diagram of differentiation based estimator.

For the verification, both estimators have been simulated with identical controller parameters
and wind conditions (according to IEC 1A), and in Figure 3 a comparison of the performance
of the two estimators is given. It can be observed that the estimation of aerodynamic torque
is improved slightly and when comparing standard deviations it can be concluded that there is
an improvement of approximately 18% (standard deviation is respectively 72 kNm and 88 kNm
for the two algorithms). For the case of estimation of rotor speed, the dynamic observer shows
significantly improved performance.

15

20

V
 [m

/s
]

Illustration of operating region

15

20

Illustration of operating region

V
 [m

/s
]

1.5

2

2.5

Q
a [M

N
m

]

Simulated aerodynamic torque

−0.2

0

0.2

Q
aer

r  [M
N

m
]

Estimation error for aero. torque

0 20 40 60 80 100

1.55
1.6

1.65
1.7

1.75

ω
r [r

ad
/s

]

Simulated rotor speed

time [s]
0 20 40 60 80 100

−0.01

0

0.01

ω
rer

r  [r
ad

/s
]

Estimation error for rotor speed

time [s]

Figure 3. Left: Simulation results of variables to estimate. Right: estimation error for selected
signals (Light blue: observer based estimate, and black: differentiation based estimate).

If we zoom in on a time interval with a large change in aerodynamic torque as in Figure 4,
it can be observed that the differentiation based method suffers from a larger time delay in the
estimation which is caused by the low pass filtering of the estimate. To counter this, the time
constant in the filter can be decreased which has the side-effect that the high frequency noise
will be increased and result in an even worse overall performance.
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Figure 4. Detailed simulation of estimation of aerodynamic torque. Solid lines: simulation
values, dashed lines: observer based estimate, and dotted: differentiation based estimate.

3. Calculation of wind speed
In the previous section a dynamic observer was presented for estimating the rotor speed and
aerodynamic torque. These two variables together with measured pitch angle will be used in
this section to calculate the effective wind speed by using (1a). First (1a) is rewritten as in (8)
and under the assumption that the air density is known, all variables on the left hand side of
(8b) will be online available. The right hand side will be a function of λ alone, because β is
online available.

Qaωr =
1
2

ρ π R2 R3ω3
r

λ3
cP (β, λ) ⇔ (8a)

2 Qa

ρ π R5 ω2
r

=
cP (β, λ)

λ3
(8b)

In the following, cP (β, λ), for a particular choice of β will be denoted cP,β(λ). The effective wind
speed is then calculated by first solving (8b) for λ and then calculating the effective wind speed
as v = ωr R

λ .
In order to be able to solve (8b) for λ we first need to understand the monotonicity properties

of λ−3 · cP,β(λ). λ−3 is clearly a monotonously decreasing function, but cP,β(λ) is concave which
means that two different tip speed ratio will lead to the same power coefficient, cP : one for
the stall region and one for the pitch region. When multiplying these two factors the result is
monotonous for some values of β, whereas it is non-monotonous for other values – determined
by the region where the positive slope of cP,β(λ) is steeper than the negative slope of λ−3. This
issue is illustrated in Figure 5 from which it can be seen that the function is invertible for large
pitch angles whereas it is not invertible for small pitch angles.

Because the right hand side of (8b) is not invertible for specific choices of the pitch angle,
knowledge about operation of the wind turbine is used to calculate the most likely λ that would
solve the equation. From the above discussion, the monotonicity can only occur in the stall
region because the slope of cP,β(λ) must be positive. This means that the issue is unlikely
to occur during nominal operation because the algorithm is designed for pitch controlled wind
turbines not operating in stalled operation. Gusts, or fault situations might on the other hand
lead to short periods of time operating in the stalled region. In this case the largest tip speed
ratio satisfying the equation is used, which is based on the assumption that it is more likely that
the wind turbine is operating in slight stall than in deep stall.

If we investigate a bit further in which operating conditions the problem of monotonicity
might happen, a plot of the nominal tip speed ratio and pitch angle is given in Figure 6. From
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Figure 6. Nominal operating range.

the illustration it can be seen that the region 10-14 m/s is the most critical operating region
for having numerically stable inversion of (8b), because both tip speed ratio and pitch angle are
relatively small. Below 10 m/s the issue is still relevant, but the nominal tip speed ratio will
be larger relative to the local maximum of λ−3 · cP,β(λ), and in order to reduce λ to a critical
size the gust must therefore be large. For larger mean wind speeds the nominal pitch angle
will be larger which means that the function will be monotonously decreasing during nominal
operation.

For the signals presented in Figure 3, the procedure described above has been applied to
calculate the wind speed estimate shown in Figure 7. From the plot on the right hand side, it
can be observed that wind speed estimate is slightly improved by using the dynamic observer as
base when comparing with the differentiation based method. And when comparing the standard
deviation of the estimation errors it can be seen that the estimate is improved by approximately
15% (standard deviation is respectively 0.20 m/s and 0.23 m/s for the two methods). This
improvement in standard deviation between the two methods is similar to that of the estimation
of Qa, which indicates that the significantly improved estimation of ωr does not increase the
performance much in terms of estimation of the effective wind speed.
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Figure 7. Left: simulated wind speed. Right: estimation error (Light blue: observer based
estimate, and black: differentiation based estimate).

4. Conclusions
This paper has presented a method for estimation of the effective wind speed. The observer
consists of two components: A state and input observer for the estimation of rotor speed and
aerodynamic torque and a calculation of the effective wind speed by inversion of the monotonous
part of a static model of the aerodynamics.

The Science of Making Torque from Wind IOP Publishing
Journal of Physics: Conference Series 75 (2007) 012082 doi:10.1088/1742-6596/75/1/012082

8



The state and input observer showed a significant improvement in performance, when
comparing with methods that solve the estimation problem by solving the differential equation
using differentiation.

The calculation of the effective wind speed has shown to be numerically stable during nominal
operation. Further investigations are necessary, though to understand how the algorithm will
perform in the case of large and fast increases in the mean wind speed – especially in the region
around rated generator speed.

It is expected from this improvement in quality of the estimate of effective wind speed that
control algorithms that at present time use this variable will benefit from using this algorithm.
Those algorithms will typically be controller that are gain-scheduled on wind speed or which
use wind speed in a feed forward setting.

In order to achieve an even higher precision in the estimation it might be required to design
the observer as one single component, because it is not clear how the estimation error in Qa

and ωr transforms into estimation error in effective wind speed. In that case it is necessary
to take the aerodynamic model into account, which means that the presented method needs
to be extended to nonlinear methods, e.g. by using the unscented Kalman filter for the state
estimation. Also the PI observer might need to be modified to a nonlinear observer. This will
make the design problem harder in practice but will potentially give a better performance.
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[8] Shibashis Bhowmik and René Spée. Wind speed estimation based on variable speed wind power generation.
In Conf. of Industrial Electronics Society, pages 596–601, 1998.

[9] Kazuhisa Ohtsubo and Hiroyuki Kajiwara. Lpv technique for rotational speed control of wind turbines using
measured wind speed. Techno Ocean, pages 1847–1853, 2004.

[10] E. L. van der Hooft and T.G. Engelen. Estimated wind speed feed forward control for wind turbine operation
optimisation. In European Wind Energy Conference, 2004.
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