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Abstract: Often, when new sensor and/or actuator hardware becomes available for use in
a control system, it is desirable to retain the existing controllers and apply the new control
capabilities in a gradual, online fashion rather than decommissioning the entire existing system
and replacing it with the new system. This paper presents a novel method of introducing new
control components in a smooth manner, providing stability guarantees during the transition
phase, and which retains the original control structure.

1. INTRODUCTION

All medium- to large-scale automation systems, such as
power plants, refineries, factories, supermarkets or even
large ships, invariably have control systems to handle the
automated processes, such as production facilities, chemi-
cal batch processing, climate control or steam production.
These control systems are often designed at the time of
commissioning of the plant and tend to rely on PLCs or
similar hardware to implement classically designed (and
often conservatively tuned) control loops. However, as
time goes by and new technology and knowledge becomes
available, it may become desirable to introduce new sensor
and/or actuator hardware.

There can be various reasons for this: wear and tear on
the existing devices; new technology that can supplement
with better or cheaper measurements or actuation becomes
available; better knowledge about the process dynamics
invites more precise control; etc.

On the other hand, there may be also be a strong argument
for maintaining the existing control system, since it has
a proven track record, and designing an entirely new
control system from the bottom up is likely to be very
costly both in terms of commissioning and operation stop.
Furthermore, in addition to a linear control dynamic,
the original controller may be part of a safety critical
interlocking circuit as well.

The contribution of this paper is to provide a method of
introducing new control components in a smooth manner,
which provides stability guarantees during the transition
phase, and which retains the original control structure
intact.

In (Stoustrup et al. (1999)) a gain scheduling method was
presented which solves this problem, but the implementa-
tion is of a rather high order, and the performance during
transitions can be poor.

The method presented in this paper relies on the Youla-
Kucera parametrization of all stabilizing controllers for a
given plant. This methodology has the advantage of en-
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suring stability during the transition, and that the perfor-
mance transfer function is affine in the design parameter,
which means that the design problem has an open loop
nature and that good performance can be expected during
transition between controllers.

Section 2 provides the necessary background information
on the Youla-Kucera parameterisation. Sections 3 and 4
present the novel method for modifying controller be-
haviour. In Section 5, a simulation example is presented,
where the controller is modified after a new actuator is
introduced.

2. CONTROLLER PARAMETERISATION

This section gives a short introduction to some basic
concepts of coprime factorisation and the Youla-Kucera
parameterisation of stabilising controllers. See (Youla et al.
(1976); Kucera (1975); Anderson (1998); Niemann (2006))
for further details.
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Fig. 1. Left: The interconnection of the system G and
the controller K0. Right: Controller implemented as
K(Q) = K ⋆ Q.

Consider the control loop in the left part of Figure 1 and
assume that the controller K0 stabilises the system G.
Factorise the lower right part of G as

Gyu = NM−1 = M̃−1Ñ (1)

with N,M, M̃, Ñ ∈ RH∞, and K0 as

K0 = UV −1 = Ṽ −1Ũ (2)

where U, V, Ũ , Ṽ ∈ RH∞, with the factors chosen to
satisfy the double Bezout identity

[

Ṽ −Ũ

−Ñ M̃

] [

M U
N V

]

=

[

M U
N V

] [

Ṽ −Ũ

−Ñ M̃

]

=

[

I 0
0 I

]

.
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All stabilising controllers for G can now be parameterised
according to the Youla-Kucera parameterisation

K(Q) = K ⋆ Q = K0 + Ṽ −1Q(I + V −1NQ)−1V −1,

with Q ∈ RH∞, i.e., G ⋆ K(Q) is stable for any stable
Q and for any stabilising controller Ki, a stable Q exists
so that K(Q) = Ki. This linear fractional transformation
setup is depicted in the right part of Figure 1, and, due to
the Bezout identity, can also be implemented as in Figure
2.
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Fig. 2. Left and right coprime factorisation-based Youla-
Kucera parameterisation of all stabilising controllers.

Thus, it is possible to implement a given controller as a
function of a stable parameter system Q based on another
stabilising controller, as depicted in the right part of
Figure 1. As stated in (Niemann and Stoustrup (1999))
this implies that it is possible to change between two
controllers online, say, from a nominal controller K0 to
another controller K1, in a smooth fashion without losing
stability, by scaling the Q parameter by a factor γ ∈ [0; 1].

wz T2 Q T3

T1

Fig. 3. Classical model matching setup.

One interesting feature of the parameterisation is that the
performance transfer function from w to z is affine in Q,
i.e.

Tzw = T1 + T2QT3, (3)
also illustrated in Figure 3, where T1, T2, and T3 are stable
transfer functions. Thus, a control design can be carried
out by finding a stable Q that minimises Tzw in some
sense. This is known as a model matching problem (Francis
(1987)).

Alternatively, if a desired transfer function for the a new
stabilisng controller K1 has been obtained, K(Q) = K1

can be realised by factoring K1 = Ṽ −1

1
Ũ1 with

[

Ṽ1 −Ũ1

−Ñ M̃

] [

M U1

N V1

]

=

[

M U1

N V1

] [

Ṽ1 −Ũ1

−Ñ M̃

]

=

[

I 0
0 I

]

,

and setting (Bendtsen et al. (2005))

Q = Ũ1V − Ṽ1U = Ṽ1(K1 − K0)V. (4)

Once a Q has been designed, the affine dependence also
means that if Q is scaled by γ as mentioned above, then the
performance will change in a predictable way for values of
γ between 0 and 1. (In fact, stability will be preserved even
for quickly time-varying γ (Hespanha and Morse (2002)),
but that is not essential here.)

3. CONTROLLER MODIFICATION

We now turn our attention to a situation, where we wish
to modify the controller behaviour but without removing
the original controller. The reasons for the desired change
can be numerous. The system may have changed due to
equipment being added or replaced or simply due to wear
and tear, or maybe a better understanding of the system
has been obtained.

As mentioned in the introduction, the reasons for desiring
to keep the original controller in the loop can also be
numerous. It may for instance contain supervisory logic
that we do not wish to replicate. Also, the operator will
often be wary of removing a functioning controller with an
entirely new replacement. Instead, adding a controller to
the original one and slowly turning it on would be much
more appealing.

y u

z w
G

K0

K̄

ū

Fig. 4. Modifying a controller through the control signal
terminal.

We assume that the original controller still stabilises
the system, but we cannot access the inside of it, as
Figure 2 would suggest is needed to use a Youla-Kucera
parameterisation. Rather, the additional controller, K̄,
must be applied at the terminals of the existing controller
as shown in Figure 4.

Thus, the task is to develop a method for designing an
additional controller to be applied at the terminals of the
original controller, which will improve the performance. It
must be possible to perform the switch gradually while
maintaining stability, so that the process can be moni-
tored.
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Ṽ −1 V −1

Q̄ Q̄

γ γ

Ũ
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Fig. 5. Controller parameterisation modified for connec-
tion to terminals of existing controller.

By modifying the Youla-Kucera parameterisation in Fig-
ure 2, we arrive at the two possible setups in Figure 5.
Here, the original controller, K0 is kept in place and is only
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accessed at the terminals. Stability of Q̄ still implies sta-
bility of the closed loop, but not all stabilising controllers
are parameterised by a stable Q̄:

Theorem 1. Let Gyu = M̃−1Ñ be a coprime factorisation

of a system, and assume that K0 = Ṽ −1

0
Ñ0 = U0V

−1

0
, is

a stabilizing controller, i.e. G ⋆ K0 ∈ RH∞. Consider a
second controller K1 = Ṽ −1

1
Ñ1 = U1V

−1

1
. Then

G ⋆ K1 ∈ RH∞ ∧ V −1

0
V1 ∈ RH∞ (5)

m

∃Q̄ ∈ RH∞ : K1 = (I + Q̄Ñ)−1
[

I Q̄M̃
]

[

K0

I

]

(6)

i.e., (6) is a parameterization of all stabilizing controllers
that include the right half plane (RHP) pole structure of
K0.

Proof: First, assume that a controller K1 satisfying (5)
is given where, without loss of generality, we can assume
that the parameterizations given satisfy the double Bezout
identity. Define

Q̄ = U1 − U0V
−1

0
V1 ∈ RH∞

From (5) we infer Q̄ ∈ RH∞. With this choice, we obtain:

(I + Q̄Ñ)−1
[

I Q̄M̃
]

[

K0

I

]

= (I + (U1 − U0V
−1

0
V1)Ñ)−1

[

I (U1 − U0V
−1

0
V1)M̃

]

[

K0

I

]

= (MṼ1 − U0V
−1

0
V1Ñ)−1

[

U0V
−1

0
− U0V

−1

0
V1M̃ + U1M̃

]

= (MṼ1 − U0V
−1

0
NṼ1)

−1
[

−U0V
−1

0
NŨ1 + MŨ1

]

= Ṽ −1

1
(M − U0V

−1

0
N)−1

[

−U0V
−1

0
N + M

]

Ũ1

= Ṽ −1

1
Ũ1 = K1

Conversely, assume that K1 is given by:

K1 = (I + Q̄Ñ)−1
[

I Q̄M̃
]

[

K0

I

]

(7)

We rewrite (7) as

K1 = (I + Q̄Ñ)−1
[

V −1

0
U0 + Q̄M̃

]

= (V0 + V0Q̄Ñ)−1
[

U0 + V0Q̄M̃
]

= (V0 + QÑ)−1
[

U0 + QM̃
]

with Q = V0Q̄ ∈ RH∞, and we see that K1 is a stabilizing
controller due to the Youla-Kucera theorem.

In order to prove that V1 contains the RHP zero structure
of V0, we rearrange (7) into

(I + Q̄)U1V
−1

1
= U0V

−1

0
+ Q̄M̃

and further into

(I + Q̄)U1 − Q̄M̃V1 = U0V
−1

0
V1 (8)

Since the left hand side of (8) is stable, so is the right hand
side. Due to coprimeness of U0 and V0 there occur no RHP
cancellations in forming the product U0V

−1

0
, and since V1

is stable, the product V −1

0
V1 itself must be stable. �

Thus, the setup in the left part of Figure 5 corresponding
to (6) parametrises all stabilising controllers containing

the same unstable poles as K0, i.e. we cannot move these
unstable poles, but we can introduce new ones.

As with the Youla-Kucera parametrisation, the perfor-
mance transfer function is affine in Q̄, and the controller
can still be designed by a model matching method, where
the T1, T2, and T3 transfer functions are the same as in
Figure 3, but V or Ṽ are introduced as shown in Figure 6.
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Fig. 6. Modified model matching setup.

In particular cases, T2 and T3 will be invertible and Q̄ can
be designed from

Q̄ ≈ −Ṽ −1T−1

2
T1T

−1

3
. (9)

If exact equality could be achieved, this would imply
Tzw = 0, but of course the inverses will usually have to
be approximated to obtain a stable Q̄.

As in (4, the design can also be done by designing a desired
K1 and finding Q solving

Q̄V = Ũ1V − Ṽ1U = Ṽ1(K1 − K0)V, (10)

or
Ṽ Q̄ = Ũ1V − Ṽ1U = Ṽ1(K1 − K0)V, (11)

but since V and Ṽ usually are not inversely stable, Q̄, must
be chosen as a stable approximation.

Note that the implementation in Figure 5 only requires the
factorised plant model, although the model of the original
controller is of course needed for the design of Q̄.
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Fig. 7. Pre-stabilised internal model control.

As an aside, we note that it is possible to fully parameterise
all stabilising controllers without doing any factorisation
as shown in Figure 7 (Rotkowitz (2006)), still only access-
ing the terminals. Here, a stable Q implies a stable closed-
loop, and vice versa. It does however require copying the
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controller and plant models, and the resulting implementa-
tion could be of a very high order. On the other hand, this
parameterisation makes it possible to deal with nonlinear
plants and controllers, which will be the topic of further
research.

4. ADDING SENSORS AND ACTUATORS

The main purpose of this work is to arrive at methods for
automatic reconfiguration when new sensors and actuators
are plugged in. The above method works for more general
changes to the system, but in case of an additional sensor
or actuator, we simply append the system model G with
the new part, and add zero columns or rows to the model
of the original controller before doing the factorisation.

Given a state space factorisation, (Niemann (2006)) pro-
vides extensions to the factors which preserve the original
parts when adding sensors and actuators. However, for now
we are not concerned with the particular structure of the
factors.

5. SIMULATION EXAMPLE

In the buffer tank example shown in Figure 8, the fluid
level M is controlled by a pump and a valve in series. The
tank is disturbed by an unmeasured load flow ṁL. The
only measurement is the fluid level.

Buffer tank

ValvePump

ṁL

M

ṁi

ω

i

v

Fig. 8. Example system.

In (Trangbæk et al. (2006)) a first principles model was
linearised to obtain the model shown in Figure 9.

6.25

10

s+0.001 s
- 1ṁi(s)ω(s)

M(s)

v(s)

i(s)
0.01

ṁL(s)

Fig. 9. Linearised model.

At the original design, the valve was manually operated,
meaning that the control system could only use the pump

to control the fluid level. Since it was desired to suppress
ramp disturbances in the load, a controller, K0, with a
double integrator was designed:

u(s) =

[

i(s)
v(s)

]

= K0(s)M(s) (12)

with

K0(s) =







−0.1(s + 0.01)(s + 0.001)2

s2(s + 0.1)

0






. (13)

After some time, it is found that the performance is
not satisfactory and that the strain on the pump is too
high. Therefore the manual valve is replaced with an
electronically controlled one. However, we still wish to keep
the original K0 in the loop for several reasons. First of all,
the controller contains some safety critical logical circuitry
in addition to the linear controller. Secondly, in periods
with very small disturbances, we may want to be able to
fully open the valve and only use the pump for control
in order to save energy. Furthermore, the plant operator
will be most happy, if the new controller can be tuned in
slowly, so that the effects can be monitored.

Thus, the new controller should be implemented as in Fig-
ure 4, and it should be possible to scale the influence of it
while preserving stability and a satisfactory performance.
We therefore choose to implement the additional controller
as in Figure 5. The disturbance w is the load flow, and
the performance output is chosen as the fluid level and
the pump current deviations, i.e. we want to maintain a
stable level without using the pump a lot. With this choice,
both T2 and T3 in Figure 6 are invertible, so Q̄ can be
designed using (9). Ṽ −1T−1

2
T1T

−1

3
has poles in s = 0, and

is approximated by moving these slightly to the left in
s-plane.

Figure 10 shows the effects of the additional controller. The
top row shows the response with the original controller to
a step in the load flow. The fluid level drops, resulting
in an increased pump speed. Due to the slowness of the
pump, it takes hundreds of seconds before the level is
returned to normal. The bottom row shows the results of
a similar load flow step but with the additional controller
applied. Now the valve immediately reacts to a fluid level
drop and almost completely removes the effects while
maintaining the same pump speed. The middle rows show
the results for different scalings of the additional controller.
An important point is that a good performance is insured
for these intermediate steps, making it possible to perform
a gradual change from one controller to the other.

It is also worth noting that although step disturbances
give no steady state error, the additional controller does
not contain integrators in itself, but borrows these from the
original controller, transferring the action from the pump
to the valve.

In practice, it may be difficult to implement a Q̄ designed
from (9), since it tends have high order and gain. In this
particular example it would probably give more moderate
gains if the valve action was included in the performance
output z. Then, T2 would no longer be invertible, and a
more traditional model matching method should be used.
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Fig. 10. Simulation of a step in the load flow. Top row: Original controller. Bottom row: Modified controller.

6. CONCLUSIONS

In this paper we have presented a novel method for
modifying controller behaviour while keeping the original
controller in place. By using a parametisation of stabilisng
controllers, stability and performance are ensured even
during transitions.

Future work may include methods that more explicitly
address sensor and actuator addition and an extension to
nonlinear systems.
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