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Abstract—
Correct diagnosis under harsh environmental conditions

is crucial for space vehicles’ health management systems to
avoid possible hazardous situations. Consequently, the diagnosis
methods are required to be robust toward these conditions.
Design of a parametric fault detector, where the fault estimation
is formulated in the so-called standard set-up for H∞ control
design problem, is addressed in this paper. In particular, we
investigate the tunability of the design through the dedicated
choice of the fault model. The method is applied to the model
of turbopump as a subsystem of the jet engine for the satellite
launch vehicle and the results are discussed.

I. INTRODUCTION

Reliability is an essential topic within many industrial
sectors, in particular the aerospace industry as no possible
and foreseeable fault should interrupt the mission objectives
of a space craft (or a launch vehicle). In this regards, having
the capability of continuous monitoring of the system states
e.g., the ability to diagnose the system’s dynamics behavior,
is a necessity in order to implement fault tolerant strategies.
Fault diagnosis has since the 1980s been an active re-

search topic. Depending on the models that have been used
to describe the systems, model based (linear/nonlinear) or
others, different approaches have been proposed [1], [2],
and [3]. One of the important problems that has attracted
attention of most in this research community is the robustness
issue that arises due to the fact that there is some mismatch
(however small) between the derived model and the real
system dynamics.
The particular focus in this paper is on employing methods

for fault diagnosis which have been inspired by and derived
from the area of robust control theory, or in wider generality
of optimization based control synthesis methods. An early
paper, which suggested combining methods for diagnosis
and control was [4]. [5] suggested to use H∞ optimization
to design fault diagnosis filters. The methods that used
dedicated and specialized filter structures were presented in
[6], [7], [8], [9]. Parametric faults are here of main interests
as the real nature of many faults is in fact parametric. A
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fault diagnosis approach for systems with parametric faults
has been used. Such an approach was presented in [10], [11],
and [12]. However, very few applications of this method has
been reported [13].
In this paper, systems with parametric faults are studied in

more details and extra notes are added such as introducing
the fault model as a design factor to improve the performance
of H∞ optimization-based method and a practical algorithm
for estimating the uncertain fault parameter. The main results
of this paper are applied to the launch vehicle simulator.
A key element for the re-usability and maintainability of

a space vehicle is provided by health management system
(HMS) that is an integral part of the system design [14].
Part of the health management system’s responsibility is to
perform diagnosis on different parts of the launch vehicle’s
dynamic behavior, herein the engines. The HMS shall be able
to diagnose faults of which the effect is hardly recognizable
due to system uncertainties (unpredictable environmental
conditions or system parameters). In addition, as the dynam-
ics of the engines are highly nonlinear and varies depending
on flight phases it is required that the corresponding diagno-
sis algorithms are sufficiently robust in order to avoid false-
detection scenarios.
The paper is arranged as follows: In Section II, dynamics

of the turbopumps of the engine is explained. In Section
III, the employed method is discussed, the problem has been
formulated into the standard set-up, and the fault detector for
the system has been designed regarding the design factor.
In section IV, an algorithm to estimate the uncertainty is
proposed and the fault estimation results of the obtained filter
for the different designs are compared. Finally, section V
provides the conclusion of the paper.

II. PROBLEM FORMULATION

A. Turbopump Model

The assembly of a turbine with one or more pumps is
called a turbopump. Its purpose is to raise the pressure
of the following propellant. Its principal subsystems are a
hot gas powered turbine and one or two propellant pumps.
It is a high precision rotation machine, operating at high
shaft speed with severe thermal gradients and large pressure
changes, it usually is located next to a thrust chamber, which
is a potential source of noise and vibration. The principal
components of the engine with turbopump system is shown
in the simplified diagram of Fig. 1.
In the gas generator cycle, the turbine inlet gas comes

from a separate gas generator. This cycle is relatively simple;
the pressure in the liquid pipes and pumps are low but the
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Fig. 1. Simple diagram of liquid propellant engine containing turbopump
feed system and gas generator [15].

pressure ratio across the turbine is relatively high; however,
the turbine or gas generator flow is small compared to the
closed cycle.

Cryogenic propellants use LOX-LH2 (Liquid Oxygen-
Liquid hydrogen). Liquid hydrogen LH2 is sub-cooled below
its normal boiling point to increase its density (propellant
densification) and to reduce vapor pressure and correspond-
ingly also tank pressure, tank size, tank mass, and turbo-
pumps power demand. For the same reasons liquid oxygen
LOX is sub-cooled. The required pump flow is established
by the design for a given thrust, effective exhaust velocity,
propellant densities, and mixture ratios.

The dynamic model of LH2 turbopump includes three
important elements: the pump speed Rh, the pump flow Qh,
and the mixture ratio Roh. In a simplified way, the dynamics
of LH2 turbopump is as follows

Ṙh =
ahQ2

h

Roh
+bhQhRh+ chRohR

2
h+bTh, (1)

where ah, b, bh, and ch are constant coefficients depending
on the design of the turbopump and Th is the LH2 turbine
torque. The same model can be used for LOX turbopump
while to avoid repeating design procedure, we only continue
with LH2 turbopump.

B. Fault Discussion

Efficiency loss (δh) has been considered as a parametric
fault for LH2 turbopump. The more efficiency loss, the less
change in speed. i.e., the dynamic equation is satisfied only
for no fault case (δh = 0). The fault augmented model is
hence,

Ṙh = (
ahQ2

h

Roh
+bhQhRh+ chRohR

2
h)(1− δh)+bTh. (2)

The linear representation of the LH2 pump dynamics is
formulated as

Ṙh = (−aRh− cQh)(1− δh)+bTh, (3)

where a, b, and c are constant coefficients of the linear
term of Taylor series about the operating point of the non-
linear system.

III. METHOD

A. Robust Parametric FDI in A Standard Set-up

A general concept of parametric fault detection architec-
ture in a robust standard set-up is proposed in [11]. The
approach is to model a potentially faulty component as
a nominal component in parallel with a (fictitious) error
component. The optimization procedure suggested here then
tries to estimate the ingoing and outgoing signals from the
error component. This works only well in cases where the
component is reasonably well excited, but on the other hand,
if the component is not active at all, there is absolutely no
way to detect whether it is faulty. The considered plant is
described by the model

{
ẋ= AΔx+Buu
y=Cyx+Dyuu

(4)

where AΔ is the deviated matrix from the nominal value
(A) by a dependency to the fault where the dependency can
be nonlinear. The fault should not change B and C. When
this is the case (as in our plant and many other applications
where sensor and actuator faults are supposed to be detected),
it is possible to model such faults in the setup given by (4)
with an input/output filter by introducing fast dynamics for
the filter such as

ẋu = −Wxu+WcQh. (5)

The possibly nonlinear parameter dependency of AΔ is
approximated with a polynomial. Therefore,

AΔ = A+ p(δ )A, (6)

where p is a polynomial or rational function of the
parameter δ satisfying p(0) = 0 (the non-faulty operation
mode).
Finally, the model (4) is written in linear fractional trans-

formation form. As a result we get a system of the form
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Fig. 2. Standard problem set-up for parametric fault detection combined
with fictitious performance block (The dashed lines are the connections
which are artificially assumed only for the design and they do not exist in
implementation).

⎡
⎣ẋz
y

⎤
⎦ =

⎡
⎣ A Bf Bu
Cf Dz f 0
Cy 0 Dyu

⎤
⎦

⎡
⎣xf
u

⎤
⎦ (7)

where z is the external output, f is the fault input signal,
the matrix Dz f is well-posed (LFT’s are normally used), and
the connection between z and f is given by

f = Δparz (8)

Δpar = δ I.

The next step in setting up the fault estimation problem
as a standard problem is to introduce two fault estimation
errors e f ad ez as

{
e f = f − f̂
ez = z− ẑ

where f̂ and ẑ are the estimation of f and z to be generated
by the filter respectively.
Fig. 2 shows the setup for this approach. In order to

design a filter F such that applying F to u and y provides
the two desired estimates f̂ and ẑ one additional step is
required, which is the introduction of a fictitious performance
block Δper f ; suggesting that the input u was generated as a

feedback Δper f from the outputs

[
e f
ez

]

u= Δper f

[
e f
ez

]
. (9)

Therefore, two filters are introduced to make sure that the

norm of ‖e f‖‖ f‖ is minimized in the frequency area of interest.
(For incipient faults a low frequency filter is used.)
For instance,

ẋe f = Ae f xe f +Be f e f
é f =Cef xe f +Def e f

(10)

so é f =Wf (s)e f . The same procedure for ez will be

ẋez = Aezxez+Bezez
éz =Cezxez+Dezez

(11)

i.e., éz =Wz(s)ez. It should be noticed that these filters are
only considered in the design phase, but they are not used
in the implementation. In fact, we introduce these filters to
handle the high excitation level of the inputs. Finally we
introduce

Δ =
[

Δpar 0
0 Δper f

]
. (12)

The significance of the Δper f block is the following. Accord-
ing to the small gain theorem, the H∞ norm of the transfer

function from u to

[
é f
éz

]
is bounded by γ if and only if the

system in Fig. 2 is stable for all Δper f , ‖ Δper f ‖∞< γ . Hence,
the problem of making the norm of the fault estimation error
bounded by some quantity has been transformed to a stability
problem. Eventually, the main result for FDI problem with
parametric fault is provided by the following [11]:
Theorem 1: Let F(s) be a linear filter applied to the

system as in Fig. 2 as

[
f̂
ẑ

]
= F

[
u
y

]
, and assume that F(s)

satisfies:

‖ Fl(Gz̃w̃,F) ‖∞< γ, (13)

where z̃=

⎡
⎣ z
é f
éz

⎤
⎦, w̃=

[
f
u

]
, and Fl(.) is the lower Linear

Matrix Transformation (LFT) representation of the two con-
nected blocks [16]. Then the resulting fault estimation error
is bounded by

‖
[
é f
éz

]
‖∞< γN (14)

where N is the excitation level of the system i.e., ‖ u ‖∞=
N.

B. Design of The Fault Detector for Turbopump

The important fact which is emphasized in this paper is
that the result we get from our design is fairly tunable by
the model of the fault we consider in (6). This is the place
we investigate in more details and finally perform the system
(7). (For convenience, we avoid using the index h for δh and
apply this to the end of the paper.)
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Considering the fact that our uncertain parameter (as
efficiency loss) in (2) changes from 0 to 1, it is obvious that
the H∞ design will be conservative because we only use half
the range we considered in our design (−1< δ < 1). Thus,
the basic assumptions are used for the fault model p(δ ) are
that it should satisfy the boundary conditions (in addition to
p(0) = 0) as

p(−1) = 1

and

p(1) = 1.

A fast search for such functions is relatively easy by
choosing polynomials as the structure of such function. To
reduce the number of degrees of freedom and complexity of
the system it is suggested to choose a low order polynomial.
In the case of choosing a second order polynomial, there is
only one unique function satisfying the conditions (p(δ ) =
δ 2) so we consider the third order case which has more
generality and degree of freedom.
A third order polynomial p(δ ) = β3δ 3 +β2δ 2 +β1δ +β0

which satisfies the mentioned conditions has the form

p(δ ) = λ δ 3+ δ 2−λ δ , (15)

where we have one degree of freedom to tune our design
when varying λ . The upper LFT of the polynomial should
be composed into (7). The representation from robust control
is

p(δ ) = Fu(M,δ I3), (16)

where M =

⎡
⎢⎢⎣
0 −λ 1 λ
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦.

Finally, the system is formulated in a standard form as

ẋ= −ax− xu+bTh+ λ f1+ f2−λ f3
ẋu = −Wxu +WcQh

ẋe f = Ae f xe f +Be f (λ f1 + f2−λ f3− f̂ )
ẋez = Aezxez+Bez(λ z1 + z2−λ z3− ẑ)
z1 = ax+ xu
z2 = f1
z3 = f2
é f =Cef xe f +Def e f
éz =Cezxez+Dezez
y1 = x

y2 = Th
y3 = Qh.

(17)

The standard model (with Def =Dez = 0) becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẋu
ẋe f
ẋez
· · ·
z1
z2
z3
é f
éz
· · ·
y1
y2
y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1
... B1 Bf

... B2
· · · · · · · · · · · · · · ·
C1

... D11 D1 f
... D12

· · · · · · · · · · · · · · ·
C2

... D21 D2 f
... D22

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
xu
xe f
xez
· · ·
Th
Qh

f1
f2
f3
· · ·
ẑ1
f̂1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)
where the matrix values are as bellow

A1 =

⎡
⎢⎢⎣

−a −1 0 0
0 −W 0 0
0 0 Ae f 0

aλBez λBez 0 Aez

⎤
⎥⎥⎦ ,

B1 =
[
Th 0 0 0
0 Wc 0 0

]T
,

Bf =

⎡
⎢⎢⎣

λ 1 −λ
0 0 0
λ 1 −λ
0 Bez −λBez

⎤
⎥⎥⎦ ,

B2 =

⎡
⎢⎢⎣

0 0
0 0
0 −Be f

−Bez 0

⎤
⎥⎥⎦ ,

C1 =

⎡
⎢⎢⎢⎢⎣

a 1 0 0
0 0 0 0
0 0 0 0
0 0 Cef 0
0 0 0 Cez

⎤
⎥⎥⎥⎥⎦ ,

D11 = 05×2,

D1 f =

⎡
⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ ,

D12 = 05×2,

C2 =

⎡
⎣1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎦ ,

D21 =

⎡
⎣0 0
1 0
0 1

⎤
⎦ ,
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Fig. 3. Block diagram of the algorithm for the estimation of δ .

D2 f = 03×3,

and D22 = 03×2.
Finally, a H∞ filter F , which estimates f̂ and ẑ and takes

u and y as inputs, is designed using hinfsyn in MATLAB.
This filter results in e f and ez vanishing to zero as time goes
to infinity.

IV. RESULTS

The detector filters have been implemented in nonlinear
Launch Simulator.
In order to obtain an estimation for δ , an algorithm has

been employed as follows (See Fig. 3).
1) A window has been located on the latest samples of f̂

and ẑ. The length of the window is 5 samples and the
sampling frequency is 67Hz.

2) The second norm of the sampled data has been com-
puted and multiplied by the sign of their mean values.

3) The results from the above blocks has been used to

calculate δ̄ = ‖ f̄‖
‖z̄‖ .

4) A low-pass filter W̄ (s) is used to reduce the effect of
the noise on the estimated fault.

Two series of comparison regarding the change in γ and
λ values are considered here to show that the choice of the
model plays an important role to improve the results. In these
experiments, the injected parametric fault has been raised
from 0 to 1 at 25s.
In Fig. 4 the comparison of estimation results among

four different values of γ ranging from 0.005 to 0.1 for
three constant values of λ is shown. In fact, it confirms
that increasing γ is equivalent to pay less attention to
the condition (13) and consequently changing the problem
into a Kalman Filter optimization problem. This results
in amplifying of the effect of the disturbances in the fault
estimation and less robustness. On the other hand, decreasing
γ reduces the effect of the disturbances and noise inputs to
the estimation and increases the robustness. For example, in
the case for λ = 0.1 we can see that the performance of the
estimation with γ = 0.005 is better than those for γ = 0.008
and γ = 0.01.
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Fig. 4. Estimation of efficiency loss δ in LH2 pump for γ comparison
while λ is constant.

In Fig. 5 the comparison of estimation results among three
different values of λ ranging from 0.01 to 1 for four constant
values of γ is shown. Increasing the value of λ results in very
weak estimation, however, decreasing λ does not mean that
the estimation is perfect. Indeed, for λ = 0.1 the estimation
of the δ is converging to 1 which corresponds to the injected
value of δ . Therefore, one could say neither the increase of
λ , nor the decrease of γ will give the best estimation results.
In fact, there is an optimal point λ which gives the best
estimation, however, we did not consider a methodological
way to obtain this optimal value but this example was a
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witness for existence of such point which can be considered
in the future developments.
Eventually, any alternative optimization method could be

considered to solve the problem e.g., numerical algorithms
for μ optimization. However, by presenting this method and
finding a significant model for the fault there is still the
advantage of solving a convex optimization problem by H∞
method compared to μ optimization.

V. CONCLUSIONS

The uncertainties/faults in turbopumps, a subsystem of the
engine, have been modeled as parametric faults in this paper.
This model has been formulated in a standard set-up which
is compatible with H∞ control design formulation. The
designedH∞ filter for different fault models are implemented
to this system. The output of the filter processed in a way to
produce the estimation of possible fault. Finally, the method
has been verified in launch simulator and the results for
different design factors have been compared then a trade off
in the design has been demonstrated.
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Fig. 5. Estimation of efficiency loss δ in LH2 pump for λ comparison
while γ is constant.
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