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Abstract— This paper presents an approach to modelling and
simulation of the thermal dynamics of a refrigeration system,
specifically a reefer container. A modular approach is used
and the objective is to increase the speed and flexibility of
the developed simulation environment. The refrigeration system
is divided into components where the inputs and outputs are
described by a set of XML files that can be combined into a
composite system model that may be loaded into MATLAB

TM.
A set of tools that allows the user to easily load the model and
run a simulation are provided. The results show a simulation
speed-up of more than a factor of three by partitioning the
model into smaller parts, and thereby isolating fast and slow
dynamics. As a cost there is a reduction in accuracy which in
the example considered is less than one percent.

I. INTRODUCTION

Numerical simulation is extensively used for experiments

within the field of control engineering, and with the in-

creasing power of computers it has become possible to

simulate very large dynamical systems on a normal desktop

PC at reasonable speed. But larger system models results in

larger and more complex equation sets that are difficult to

handle and therefore a range of simulation tools capable of

handling large system models is available. When choosing a

simulation tool it is worth considering the ease of modelling,

simulation speed and accuracy because these parameters vary

from tool to tool.

A common tool utilized within control engineering is

SIMULINK
TM [5], which allows the user to create and simu-

late large models from built-in or user developed component

libraries through a Graphical User Interface (GUI). The

simulation model composed of component models may be

solved by a range of block oriented input/output solvers that

automatically adjusts the size of the numerical integration

step. SIMULINK
TM variable-step solvers change the step size

during simulation [10], reducing the step size to increase

accuracy when the states of a simulation model are changing

rapidly and increasing the step size to avoid taking unnec-

essary steps when the models states are changing slowly.

Computing the step size adds to the computational overhead

at each step but can reduce the total number of steps, and

hence simulation time, required to maintain a specified level

of accuracy for models with rapidly changing or piecewise
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continuous states. The selected integrations step is however

inherited by blocks further down the signal path and if

the components further down the path have slow dynamics

compared to the preceding blocks they will be simulated

with unnecessarily small integration step sizes, leading to

a computational overhead. Such a system is referred to as

stiff and while MATLAB
TM and SIMULINK

TM have specific

solvers for these types of problems they do not address the

problem with computational overhead in stiff systems.

Another approach is used by DYMOLA
TM [7] that imple-

ments the MODELICA [6] language which is an equation-

based object-oriented modelling language. In MODELICA

symbolic equations that define the dynamical behavior of

a component may be entered in a non-causal way, leaving

the task of ordering and reducing the final set of equations

to the simulation engine before a simulation can be run. Stiff

problems may be solved using implicit methods that allow

larger step-sizes at the cost of solving a set of non-linear

equations at each time step. DYMOLA
TM uses mixed-mode

integration [9] that takes a middle course where the system

is split up into fast and slow states. Only the fast states

are discretized implicitly leaving a smaller set of nonlinear

equations to solve at each time step and thus a faster

simulation. To speed up the simulation even further inline

integration [8] is supported. The discretization formulas

are inserted (in-lined) into the problem and DYMOLA
TM’s

symbolic engine is applied to the resulting equations [9]. The

automatic model reduction and partitioning approach used by

DYMOLA
TM does not, however, take advantage of a-priori

system knowledge that already exists.

In this paper an attempt was made to build a small and

fast simulation environment that provides easy modular mod-

elling and rapid prototyping of refrigeration systems from a

library of component models. A modelling and simulation

environment for MATLAB
TM has been developed to enable

simulation experiments on nonlinear models consisting of

a mix of models based on Ordinary Differential Equations

(ODE), Differential Algebraic Equations (DAE) and purely

algebraic equations. The objective of the tool is to provide

rapid and flexible refrigeration system model development

from a predefined set of refrigeration component models. A

refrigeration container model has been chosen as an example

for this study.
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Refrigeration containers are used to move many different

types of cargo between all areas in the world and this puts

some unusual requirements on the refrigeration system with

respect to the temperature range on both the cold and the hot

side. The goods transported may require a stable temperature

between -30C◦ and +20C◦ and the temperature of the air

around the container can be between -30C◦ and +50C◦.

Because of the nonlinear nature of the refrigeration system

and the large temperature range it is infeasible to use a linear

model for simulation experiments and therefore a nonlinear

model must be used. The requirements for such a model is

that it should match the real system close enough to be used

for closed loop control experiments and simulations should

run at least one order of magnitude faster than experiments

on the real system. Another important requirement is that it

must be possible to change the model configuration without

having to rewrite or reorganize the entire set of equations for

the model by hand. Therefore a modular approach is selected

where the model of the refrigeration system is composed of

a set of interchangeable component models that are based on

first principles and assumptions where appropriate.

A model of a refrigeration container is developed and

used as a test case for the simulation environment. The

system has both fast and slow states but the fast states are

isolated in a single component leading to a potential speed-

up of the simulation with a modular approach. Therefore it

was attempted to decouple component models with slower

dynamics from models with fast dynamics by simulating

each of the component models separately and only exchange

input/output values between the component models at fixed

discrete times. The number of steps and average step time for

the solvers for each of the components is used to calculate

the difference in simulation time of the example system, as

either a modular model or a monolithic model.

II. MODELLING

The model of the refrigeration system is divided into

components that each represent a physical component of the

system, i.e. a condenser or an evaporator. Each component

model is described by two files; an m file that holds the

input/output equations of the model and an XML file that

describes the properties of the inputs and outputs of the

m file. The simulation model is the overall model for the

refrigeration plant and its properties are described by an

XML file that holds a list of included component models

and the connections between them. Therefore the structure

of the simulation model is defined by the simulation model

definition file, and from this the model loader can create a

simulation object that is used by the simulator.

A. Component Model Syntax

Modelling of component models is basically the same as

for normal ODE model functions that may be solved by

MATLAB
TM’s built-in ode solvers, but additional info is

needed by the model loader in order to do type-checking

when connecting the inputs and outputs of the component

models. Each component model is described by an m file

containing the input/output equations, an XML file describing

the input/output properties of the model, its execution mode,

and the name of the corresponding m file. The syntax for

writing the component model XML file is shown in the box

below:

Component Model Syntax
<?xml version="1.0" encoding="UTF-8"?>

<component name=["Component Name]">

<inputs>

<input name=["Input1 Name"] type=["Input1 Type"]

description=["Input1 Description"]/>

.

.

<input name=["InputN Name"] type=["InputN Type"]

description=["InputN Description"]/>

</inputs>

<states>

<state name=["State1 Name"] type=["State1 Type"]

default=["State1 Start Value"]

description=["State1 Description"]/>

.

.

<state name=["StateN Name"] type=["StateN Type"]

default=["StateN Start Value"]

description=["StateN Description"]/>

</states>

<connectors>

<connector type=["type"] conid=["Conn. Name"]>

<{input, state} name=["Name"]

type="Physical Entity"/>

<{input, state} name=["Name"]

type="Physical Entity"/>

</connector>

.

.

</connectors>

<control_inputs>

<input name=["Input Name"] type=["Input Type"]

description=["Input Description"]/>

.

.

</control_inputs>

<simulation method={"ode15s", "call"}

call=[".m File Function Name"]/>

<filename>[.m File Name]</filename>

</component>

The <inputs> section contains a list of the inputs to the

component model, and it is important that the inputs are

listed in the same order as they occur in the input vector of

the model function. Each input has a name, a type used for

type-checking when inputs are connected, and a description.

There must be the same number of inputs in the input

list as the length of the input vector of the corresponding

model function. The <states> section is similar to the

input section except that it describes the states or outputs of

the function and that a default value must be declared. The

default value is used as initial value in simulations when

the simulation tool is not given an initial state vector to

start from. Signals may be grouped together in connectors

that allows the user to connect a set of signals from one

component model to a similar set on another component

model in one operation.

Because this environment is used for refrigeration systems

it has a built-in connector class for refrigeration pipe inter-

faces but obviously, for other applications, other connections
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will be relevant - see Simulation Model Syntax in Subsection

II.B. On the refrigeration pipe interface three variables exist;

a mass flow ṁ, a pressure p, and an enthalpy h. The model

loader will return an error if each refrigeration pipe interface

does not contain exactly one of each of the mentioned

aforementioned types. The individual variables may be either

an input or a state but the model loader will check that each

of the inputs can be connected to a state of the correct type

when two refrigeration pipe interfaces are connected. This

saves the user the work of having to connect the variables

manually, but when building the component models attention

must be given to where the different states that are shared

between models are located.

B. Simulation Model Syntax

The syntax for the simulation model XML file are listed

below:

Simulation Model Syntax
<?xml version="1.0" encoding="UTF-8"?>

<simulation_model name=["Simulation Model Name"]>

<component_path>[Component Library Path]

</component_path>

<components>

<component name=["Component Model Name"]

file=["Component Model XML File Name"]/>

.

.

<component name=["Component Model Name"]

file=["Component Model XML File Name"]/>

</components>

<connections>

<connector name=["Connector Name"]>

<component name=["Component Name"]

conid=["Connection Name"]/>

<component name=["Component Name"]

conid=["Connection Name"]/>

</connector>

<connection name=["Connection Name"]>

<component name=["Component Name"]

type="Input" input=["Input Name"]/>

<component name=["Component Name"]

type="Output" output=["Output Name"]/>

</connection>

</connections>

</simulation_model>

The simulation model is composed of a set of component

models and their connections described by the simulation

model XML file, containing a list of the included compo-

nent models and a description of how the components are

connected. The <components> section lists the component

models used in the simulation model and it is allowed to use

a component model more than once if they are given unique

names. In the <connections> section all the connections

in the simulation model are listed. A connector connection

is established as in the <connector> sections by giving

the name of the two component models and the connector

on each of the components. Inputs and outputs that are not

associated with connector interfaces, such as control inputs

to actuators, are connected in a <connection> section by

listing the two components one by one. In each of the

<component> sections it must be stated whether the signal is

an input or an output, and what the name of the signal is. The

model loader provides type checking on connections between

components and gives a precise description, with the names

of the implicated components and signals, in case of an

eventual error in the set of connections between components.

The model may be loaded into MATLAB
TM with a model

loader function that loads each of the components and

creates a struct containing all the information necessary for

simulation. During simulation the states of the component

models are kept in a single vector, denoted X, and therefore

two matrices that maps between X and component model

I/O are generated for each component model. The matrix Zn

maps from X to the component model x-vector xn such that

X = Zn ·xn (1)

xn = ZT
n ·X (2)

where the index n denotes the component model number.

Component model inputs un are mapped from X by the

matrix CMn such that

un = CMn ·X (3)

Because CMn maps from state variables that reflect a physi-

cal value to inputs that take a physical value, it is a one-zero

matrix and must have exactly one ”1” in each row. When

the model loader has created the mapping matrices they are

used to check the connection integrity of the system model

such that all inputs are connected to exactly one state.

III. SIMULATION

Simulation of the system model is done in discrete time

steps defined in the time vector given in the simulation

function call. In each of the time steps the component

models are simulated separately, according to the method

defined in the component model XML file and the results are

then combined into the X vector containing the states for

all of the component models. Component models that are

purely algebraic are evaluated in one operation like a normal

MATLAB
TM function, and dynamical models are solved by

one of MATLAB
TM’s built-in ode functions. Fig. (1) shows

a possible structure for a simulation model consisting of four

component models.

The discretization of the signals between the component

models is equivalent to inserting a zero order hold between

all models as shown on Fig. (1).

The input to the individual component models are calcu-

lated by applying (2) and (3) and given as arguments to the

appropriate simulation function such that

xn(k) = fn ([t(k−1) t(k)], Zn ·xn, CMn ·X) (4)

where fn is the simulation function for the referenced compo-

nent model and [t(k−1) t(k)] is the time interval in which

to simulate. The results from the each of the component

simulations are then combined into the system state-vector

X by

X(k) =
N

∑
n=1

Zn ·xn(k) (5)
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Fig. 1. Example of a Simulation Model Structure

where N is the total number of components in the model.

The simulation environment may then proceed and simulate

the next time step with the same procedure as above.

IV. REEFER MODEL

The refrigeration system used as an example here utilize

an economizer to increase the efficiency of the system at

high pressure differences between the cold and hot side.

The compressor efficiency is lower at high pressure dif-

ferences which is exist when there is a large difference

between the evaporation and condensation temperatures.The

economizer arrangement increases the refrigeration capacity

and improves the coefficient of performance (COP) [11]. A

schematic of the system can be seen in Fig. 2. The elements

of the model are described in the sequel. The explicit 44

equations of the model are not derived here due to space

limitations, but they are available in [12].

Fig. 2. Refrigeration System for a Reefer Container

The system consists of a two-stage piston compressor,

a condenser, an evaporator, and an economizer [11] which

is a counterflow plate heat exchanger. The compressor is

equipped with a frequency converter which enables it to run

at variable speed. The expansion valves are electromagneti-

cally pulsed on/off valves and the fans may run at half speed,

full speed, or be turned off entirely. There are three major

pressure levels in this setup; p1 is the evaporator pressure,

p2 is the intermediate pressure between the two compressor

stages, and p3 is the condenser pressure. Since p2 is also

the evaporation pressure on the cold side of the economizer

it is coupled closely to the evaporation temperature of the

economizer, and hence influential on the inlet temperature

of the refrigerant to the evaporator.

According to [1] the dominant dynamics of a refrigeration

system are the thermal time constants of the metal surfaces

in the heat exchangers and refrigerant mass time constants,

with respect to control applications. Also according to [1]

some of the components have dynamics that are so fast

compared to the dominant dynamics that they may be

replaced with algebraic equations, thus reducing the model

order while preserving the physical behavior of the model

on the dominant dynamics. The components that may be

modelled algebraically are the expansion valves and the

compressors while the rest of the components are modelled

using first principles or assumptions. Two pipe junction

models are needed in order to model the joining and splitting

of refrigerant flows that occur between the compressor stages

and after the receiver, respectively.

A. Pipe Joining Junction

The pipe junction model has three states; Pressure p,

internal mass M, and output enthalpy hout . It also has five

inputs; the mass flows on all three interfaces ṁin1, ṁin2,

ṁout , and the input enthalpy for both refrigerant inputs hin1

and hin2. The pressure of this component model has fast

dynamics because it is a small volume containing vapor with

a high mass flow and no boiling liquid to dampen pressure

oscillations and therefore the exact dynamics are neglected

and the absolute pressure simply calculated instead.

B. Compressor

The compressor has two almost identical stages where

the only difference is that the displacement volume of the

first stage is twice as large as that of the second stage. The

compressor stages are modelled by two algebraic functions

giving the mass flow and output enthalpy as a function of

input pressure, output pressure, input enthalpy, the speed

of the compressor, and the temperature of the compressor.

The compression is assumed adiabatic and the physical

behavior of the model includes harmful volume, and valve

pressure loss. The mass of the refrigerant in the compressor

is neglected and therefore the mass flows on the input and

output are equal.

C. Expansion Valve

The expansion valve model is purely algebraic and mod-

elled as a continuous valve giving the average mass flow

of the electromagnetically pulsed on/off valves used on the

reefer. A lookup table is used to find the mass flow at full

opening as a function of the pressures on both sides and

this is multiplied with the ON time, which is the fraction of

time it is turned on. The expansion is assumed adiabatic end

therefore there is no change to the enthalpy of the refrigerant.
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D. Economizer

The hot side of the economizer is filled with liquid refrig-

erant running from the receiver to the evaporator expansion

valve and is therefore modelled as a single region with

uniform heat transfer from liquid to metal. The liquid volume

is assumed to have uniform pressure and enthalpy and a

constant pressure drop from input to output. The cold side,

where refrigerant evaporates, is modelled as a single volume

where the amount of energy transferred from the metal to

the refrigerant is dependent on the difference in temperature

between the refrigerant and the metal walls. The thermal

capacitance of the metal walls acts as a damper on the

dynamics and it is therefore included in the model.

E. Evaporator

The evaporator is modelled as in [2] which is a lumped

model with a moving boundary between the two phase and

the vapor volume.

F. Condenser

The condenser is modelled as in [3] and [4] which is a

lumped model with a moving boundary between the two-

phase volume and the vapor volume.

G. Receiver

The receiver is a buffer tank for excess refrigerant. The

refrigerant is led from the condenser into the top of the re-

ceiver and liquid refrigerant to the expansion valves are taken

from the bottom. The receiver is usually either neglected

in dynamical models of refrigeration plants or not existing

in the modelled plant. It is, however, not entirely without

influence on the refrigeration system’s dynamics, especially

in startup situations and during fast pressure changes. The

reason for this is that the liquid in the receiver acts as a

buffer and has a dampening effect on pressure transients

from the condenser, but this can also lead to problems with

vapor bubbles in the feed line to the expansion valves which

severely degrades the mass flow. The liquid in the receiver

that goes to the expansion valves may be either sub-cooled or

at the boiling point. If the liquid starts to boil it will turn into

a two phase mixture of liquid and vapor with a quality that

depends on how much it is boiling. When the condenser fan

is switched on, the pressure in the receiver can drop rapidly,

and if the temperature of the liquid in the receiver is close

to the boiling point it will begin to boil until the temperature

drops below the boiling point.

H. Box

The box is the largest thermodynamic capacitance in the

reefer due to its mass, but in this example an empty container

has been used and therefore the thermodynamic capacitance

consists mainly of the aluminium T-floor and the air inside

the container. Energy is exchanged by air circulating from

the evaporator, over the floor, and back to the evaporator

again along the sides and roof of the container. The air is

heated by energy leaking through the insulated walls, floor

and roof of the container.

V. RESULTS

A. Simulation Speed

An experiment has been carried out in order to measure the

increase in speed gained by simulating the system as separate

component model functions instead of a large single-function

model. The reefer model used in the experiment has 17

discrete and 35 continuous states and are divided into 10

component models, where four are purely algebraic and the

remaining six are continuous. A simulation of a 4000 s period

has been carried out using a laptop equipped with a 2.0 GHz

Core 2 Duo processor and 2 GB of RAM. The discrete time

step size of the simulation environment was set to one second

and the simulation completed in 156.8 s, i.e., 25.5 times

faster than real time experiments.

Fig. 3 shows the time used to simulate each of the

components at the discrete time steps during the 4000 s

simulation, and Fig. 4 shows the number of simulation steps

used by each of the components for each discrete time step.
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The time, Tuni, that it would have taken a solver to simulate

the model if it had been unified into a single, monolithic,
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function is calculated using the total number of simulation

steps and the average time for a single simulation step for

each model. The total number of simulation steps Sn is the

number of times that a model component function has been

called during the entire simulation, either by the ODE solver

if it it is continuous or directly by the simulation environment

if it is algebraic. The average time for a single simulation

step tn is found by

tn =
Tn

Sn

(6)

where Tn is the total time that the CPU has spent solving a

particular model during the entire simulation.

The time saved by simulating in smaller components

has been calculated by averaging over the entire simulation

period as in

Tuni =
N

∑
n=1

Smax · tnx (7)

where N is the total number of component models, Smax

is the number of simulation steps used by the component

model that used the most simulation steps during the entire

simulation. Equation (7) yields a total simulation time of

528.7 s for a monolithic model which corresponds to a speed-

up of

528.7s

156.8s
= 337.2% (8)

for the modular model compared to a monolithic model.

The average error of the modular simulation is 0.734%,

relative to a simulation of the same model unified into a

monolithic function, which is acceptable when considering

the improvement in simulation speed.

VI. DISCUSSION AND FUTURE WORK

A. Discussion

There are both benefits and drawbacks to the modular

approach; it is up to the user to determine a suitable size of

the discrete time steps with respect to the fastest dynamics

in the set of component model states that are used as inputs

to other component models. It is however possible for a

component model to have fast internal dynamics, that is, a

state that is not used as input to other component models

and thereby discretized by the simulation environment.

The separation of the component models, however, makes

it possible to simulate systems with both fast and slow

dynamics faster than it is possible with a unified system

model, where all the equations of the composite model are

rewritten as one function that can be used for simulation.

The reason for this is that a solver for a unified model would

need to evaluate all the equations for the entire model for

each of the time steps, which would be sized with respect to

the fastest dynamics of the unified model. By simulating the

system as separate component models it is possible to have

one or more components with fast internal dynamics that

are simulated using smaller time steps than is necessary for

components with slow dynamics. This results in an overall

reduction in calculations needed to simulate the system for

a given period of time and thereby a faster simulation.

The decentralized nature of the simulation has a potential

cost on the achieved accuracy of the simulation result due

to the sequential computation. On the other hand solving

smaller algebraic equations might have a positive influence

on the accuracy of the result. In fact, in some cases, a

numerically infeasible simulation might be rendered feasible

by decentralization for some systems.

B. Future Work

A mathematical formulation that describes the implica-

tions that the discretization has on the accuracy of the sim-

ulation results and provides a guideline, or even automatic

identification of the largest possible discrete integration step

that can be used for a given model without exceeding the

target accuracy of the simulation.
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