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Abstract— This paper presents an algorithm to interpolate
between two observer-based controllers for a linear multivari-
able system such that the closed loop system remains stable
throughout the interpolation. The method interpolates between
the inverse Lyapunov functions for the two original state
feedbacks and between the Lyapunov functions for the two
original observer gains to determine an intermediate observer-
based controller.

I. INTRODUCTION

Observer-based controllers play a dominating role in mod-

ern control theory due to their wide generality and in indus-

try due to their appealing qualities of monitoring process

variables that are not directly accessible by measurements,

and by allowing these estimated variables to be used for

feedback. Even controllers that are not directly formulated

as observer based controllers can usually be re-written into

this form, see [12]. Several decades of research in observer

based controllers have produced a vast number of design

techniques for such controllers.

Ideally, one would like to design a controller that is both

fast and has good measurement noise rejection properties.

Clearly this is not possible, as increasing the bandwidth of

the closed loop system will also make the system more

sensitive to measurement noise [1]. Then the option is to

design two distinct controllers: A controller K1 which has a

low closed loop bandwidth and is therefore not very sensitive

to noise but exhibits a slow response and a controller K2

which has a high bandwidth and is therefore fast but very

sensitive to noise. Another reason to design two controllers

for a certain plant can be associated with actuator saturation

[8]. Also achieving some predefined output properties in the

system performance can lead to follow a scheduled controller

approach. Having designed the two controllers, the next

issue which has to be addressed is how to switch between

these two controllers. In many systems jumps in the input

to the system are not desirable. Thus, finding a smooth

way to switch between the two controllers comes up as a

crucial problem. In [10], an approach is presented based on

interpolation of Lyapunov functions. This approach, however,

is based on continuity arguments, and is not guaranteed to

cover the whole transition from one controller to another as

opposed to the approached presented in the present paper.
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One important step in actual gain scheduling involves

implementing the family of linear controllers such that the

controller coefficient (gains) are varied (scheduled) according

to the current value of the scheduling variable, also called

scheduling signal that may be either exogenous signal or

endogenous signal with respect to the plant [9]. Various

issues arise here. An issue about the observer-based con-

trollers here is that a simple gain interpolation technique

which usually works well potentially can leave the closed

loop system unstable for some intermediate points if applied

to interpolate between two observer based controllers.

This paper presents an algorithm for interpolation between

two observer-based controllers, designed to control a linear

multivarible system, which renders the closed loop system

stable for all values of the interpolation parameter. The

family of observer-based controllers which will be introduced

here can help the designer to achieve a safe bumpless transfer

between two observer-based controllers to reach the control

objectives. Finally, two numerical examples illustrate our

claims.

II. PRELIMINARIES

The following notations are used in this paper. X∗ indicates

the transpose for X which is either a matrix or a vector.

X < 0 (X > 0) means that X is symmetric and negative

definite (positive definite). Re(X) denotes the real part of

a complex number. Finally, I stands for an identity matrix

with appropriate dimension.

Consider the open loop system

ẋ = Ax + Bu , y = Cx + Du

then:

• The system is asymptotically stable if all eigenvalues of

A satisfy Re(λ ) < 0 [4].

• A matrix A is Hurwitz if and only if for any given

positive definite symmetric matrix Q there exists a

positive definite matrix P that satisfies the Lyapunov

equation [3]:

PA + A∗P = −Q , Q = Q∗

or equivalently

PA + A∗P < 0

• The previous criterion can be written as

AP−1 + P−1A∗ < 0
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III. MAIN RESULTS

Throughout this paper we will assume that (A,B) is

controllable and (C,A) is observable. It should be noted that

a slightly weaker results can also result even if (A,B) and

(C,A) are only stabilizable and detectable.

J. Bertram in 1959 was perhaps the first to realize that

if a given system realization was state controllable, then

any desired characteristic polynomial could be obtained by

state-variable feedback [5]. Since then state feedback and

state space based output feedback controllers have been two

of the most researched and written about issues in modern

control theory. There is, of course, a long history of gain

scheduling in applications too. However, bumpless transfer

(soft switching) between two state feedbacks need some

precise considerations because the gain interpolation of gain

scheduled state feedbacks can leave the closed loop system

unstable for the intermediate points. The following lemma

presents an algorithm for interpolating between two state

feedbacks while the closed loop system remains stable for

all intermediate points.

Lemma 1: Consider the following control system:

ẋ = Ax + Bu

and assume that u = F0 x and u = F1 x are both stabilizing

state feedback laws, with Lyapunov functions:

V0(x) = x∗ X0 x and V1(x) = x∗ X1 x

respectively, with Xi > 0, i = 0,1. Then, a family of state

feedback gains F(α) which stabilizes the system for every

α , 0 ≤ α ≤ 1 is given by:

F(α) = Fℓ(JF ,αI) (1)

where

JF =

(

F0 (F1 −F0)X
I I−X

)

, X = X−1
1 X0

Furthermore, F(α) satisfies F(0) = F0 and F(1) = F1.

Proof: Defining Y0 = X−1
0 and Y1 = X−1

1 , we can rewrite

the Lyapunov inequalities corresponding to V0(x) and V1(x)
as:

Q0 := (A + BF0)Y0 +Y0(A + BF0)
∗ < 0

and

Q1 := (A + BF1)Y1 +Y1(A + BF1)
∗ < 0

respectively. We will demonstrate, that the matrix valued

function

Y (α) = (1−α)Y0 + αY1

which is positive definite for α ∈ (0;1), satisfies

(A + BF(α))Y (α)+Y(α)(A + BF(α))∗ < 0

for all α ∈ (0;1). To that end, we observe that:

(A + BF(α))Y (α)

=
(

A + B
(

F0 + α(F1 −F0)X(I−α(I−X))−1
))

((1−α)Y0 + αY1)

=
(

A + BF0 + αB(F1 −F0)Y1Y−1
0

(

I−α
(

I−Y1Y−1
0

))−1
)

((1−α)Y0 + αY1)

=
(

A + BF0 + αB(F1 −F0)Y1 ((1−α)Y0 + αY1)
−1

)

((1−α)Y0 + αY1)

= (A + BF0) ((1−α)Y0 + αY1)+ αB(F1 −F0)Y1

= (1−α)(A + BF0)Y0 + α (A + BF1)Y1

from which we conclude that:

(A + BF(α))Y (α)+Y (α)(A + BF(α))∗

= (1−α)Q0 + αQ1 < 0, ∀α ∈ (0;1)
which establishes the proof.

From the last argument, note that in the special case Q0 =
Q1, which is often obtainable, the proposed feedback will

actually remain stable for all α , not just for α ∈ (0;1).
Note also that if there is a common Lyapunov function for

the both state feedback controllers the Lemma 1 interpolation

reduces to simple gain interpolation.

In most practical applications, the system states are not

completely accessible and all the designer knows are the

outputs and the inputs. Hence, the estimation of the system

states is often necessary to realize some specific design

objectives. The important issue in designing the observer

gain (L) is to have A + LC as a stable system. Thus, the

critical point in bumpless transfer between two observers is

the stability of A+LC. The subsequent lemma expresses an

algorithm for interpolating between two observers while the

stability of A + LC is guaranteed.

Lemma 2: Let L0 and L1 be two different Luenberger

observer gains for the following system:

ẋ = Ax + Bu , y = Cx + Du

and suppose that

V0(x) = x∗ Z0 x and V1(x) = x∗ Z1 x

are the corresponding Lyapunov functions to A + L0C and

A+L1C, respectively, with Zi > 0, i = 0,1. Then a family of

observer gains L(β ), 0 ≤ β ≤ 1 is given by:

L(β ) = Fℓ(JL,β I) (2)

where

JL =

(

L0 I

Z(L1 −L0) I−Z

)

, Z = Z−1
0 Z1

Moreover, L(β ) satisfies L(0) = L0 and L(1) = L1.

Proof: The intermediate points admit the Lyapunov

function given by

Z(β ) = (1−β ) Z0 + β Z1

To verify the above claim, we have to show that

Z(β )(A + L(β )C)+ (A + L(β )C)∗Z(β ) < 0
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The first term in left side of the Lyapunov inequality can be

rewritten as:

Z(β )(A + L(β )C)

= ((1−β )Z0 + β Z1)
(

A +
(

L0 + β (I−β (I−Z))−1Z(L1 −L0)
)

C
)

= ((1−β )Z0 + β Z1)
(

A + L0C + β (I−β (I−Z−1
0 Z1))

−1Z−1
0 Z1(L1 −L0)C

)

= ((1−β )Z0 + β Z1)
(

A + L0C + β ((1−β )Z0 + β Z1))
−1Z1(L1 −L0)C

)

= (1−β )Z0 (A + L0C)+ β Z1 (A + L1C)

So, we can conclude:

Z(β )(A + L(β )C)+ (A + L(β )C)∗Z(β )

= (1−β )(Z0(A + L0C)+ (A + L0C)∗Z0)+

β (Z1(A + L1C)+ (A + L1C)∗Z1)

According to the assumptions Z0 and Z1 are Lyapunov

functions for A + L0C and A + L1C, respectively. Thus, we

have:

Z0(A + L0C)+ (A + L0C)∗Z0 < 0

and

Z1(A + L1C)+ (A + L1C)∗Z1 < 0

Then the proof is immediate.

According to the separation principle the problem of de-

signing an observer-based controller can be broken into two

separate parts: observer design and state feedback design.

This approach facilitates the design procedure. Lemma 1

presented an algorithm for interpolation between two state

feedbacks while satisfying the stability criterion. Similar

algorithm was described in Lemma 2 for observers. Com-

bining the results from the two previous lemmas leads to an

algorithm for bumpless transfer between two observer-based

controllers.

Theorem 1: Consider two observer-based controllers

K0 =

(

A + BF0 + L0C + L0DF −L0

F0 0

)

and

K1 =

(

A + BF1 + L1C + L1DF −L1

F1 0

)

for the minimal system

ẋ = Ax + Bu , y = Cx + Du

.

which have been already designed [6].

Then a family of observer-based controllers for the men-

tioned system is denoted as

K(γ) = Fℓ(JK ,γI) , 0 ≤ γ ≤ 1 (3)

where

JK =

(

M11 M12

M21 M22

)

Fig. 1. The family of observer-based controllers introduced by Theorem 1

M11 =

(

A + BF0 + L0DF0 + L0C −L0

F0 0

)

M12 =

(

(L0D+ B) (F1 + F0) X I

(F1 −F0) X 0

)

M21 =

(

I 0

Z (L1 −L0) (C + DF0) −Z (L1 −L0)

)

M22 =

(

I−X 0

Z (L1 −L0) D (F1 −F0) X I−Z

)

X and Z are as those defined in (1) and (2).

Also, K(γ) satisfies K(0) = K0 and K(1) = K1.

Proof: Fig. 1 shows the family of observer-based

controllers presented by Theorem 1 (equation (3) is the LFT

representation of the illustrated block diagram). Applying the

principle of separation and then results in Lemmas 1 and 2,

the proof is immediate.

It is interesting to see that if there is a common Lyapunov

function for the closed loop system composed of the plant

and the family of observer-based controllers the interpolation

reduces to the simple gain interpolation. Furthermore, the

closed loop system is stable for any γ (not only 0 ≤ γ ≤

1) and any rate of switching [1]. Otherwise, in the general

case which was addressed in Theorem 1 we assume that

the scheduling variable is slow enough not to cause stability

problems.

It should be emphasized that if the results above (as

suggested) are applied to facilitate a transition from one

controller to another, the stability arguments only hold during

the transition if this is sufficiently slow (rate limited).

IV. NUMERICAL EXAMPLES

Example 1: This example illustrates the fact that the

gain interpolation between two stabilizing observer-based

controller can cause instability for some intermediate points.

However, it is shown that the algorithm proposed by Theo-

rem 1 does not have this deficiency.

Consider the following third order system,
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Fig. 2. Eigenvalue Plot of The Closed Loop System in Example 1 where
Gain Interpolation (red curve) and Theorem Interpolation (green curve) of
Observer-Based Controllers are applied.

A =





−0.597 −0.038 0.832

1.636 −0.121 0.068

−0.334 −0.968 −0.311



 , B =





−0.638

0.091

0.363





C =
(

1 1 1
)

, D = 0

This system is unstable with eigenvalues of −1.3195

and 0.1453 ± 1.0314i. Then two different observer-based

controllers have been designed for stabilizing the system:

K0 =









−1.863 −1.995 −0.393

0.762 −0.896 −0.811

−1.75 −1.992 −1.751

1.353

0.861

1.367

−0.135 0.947 −0.200 0









and

K1 =









−1.152 −1.103 −0.834

1.033 −0.651 −0.376

−1.441 −1.784 −0.785

0.916

0.551

0.901

−0.567 0.233 1.175 0









Fig. 2 illustrates the eigenvalue plot of the closed loop

system where the gain interpolation and the interpolation

proposed by the previous theorem for observer-based con-

trollers are applied for bumpless transfer between the two

designed controllers. The plot reveals that the naive gain

interpolation of the controllers fails to maintain the stability

of the closed loop system while the interpolation appeared in

the previous theorem renders the closed loop system stable

for all 0 ≤ γ ≤ 1.

Example 2: In this example we will show the bumpless

transfer between two state feedbacks designed to meet dif-

ferent objectives in a HVAC system applying the algorithm

described by Theorem 1.
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Applying state feedback F1

Fig. 3. Inlet temperature while applying state feedbacks F1 and F2

We consider here the control of the inlet air temperature

of a ventilation system (a water-to-air heat exchanger). In

accordance with the linearized model of a water-to-air heat

exchanger described in [7] the linear model from primary

(supply) water flow (ṁws) to inlet air temperature (Tinlet)

can be explained as following:

[

Ṫ inlet

Ṫ wout

]

=

[

a4 a3

0 a1

]

·

[

Tinlet

Twout

]

+

[

b3

b1

]

· ṁws

y =
[

1 0
]

·

[

Tinlet

Twout

]

where

a1 = −0.0352 , a3 = 0.0564 , a4 = −0.5961

b1 = 17232 , b3 = 227635

and Twout represents the temperature of the

water that leaves the coil. Two state feedbacks

F1 =
[

−0.2464 ·10−5 0.0155 ·10−5
]

and F2 =
[

−0.2103 ·10−5 0.0421 ·10−5
]

are designed for

this system. Fig. 3 illustrates the system output (Tinlet)

while state feedbacks F1 and F2 are applied to remove the

step disturbance occurring at 400sec.. The response resulted

from applying of F1 is slow but no overshoot happens.

However, applying F2 results in a faster response with

overshoot. The fact is that the overshoot in the response

is not desirable because in the real system it causes some

oscillations which damps very slowly.

To overcome the problem of designing a fast controller

with no overshoot we combine the two state feedbacks:

When the output of the system (Tinlet) is more than (1oC)

away from the set-point F2 will be the active controller but

when the system output reaches the bound of (±1oC) from

the set-point a bumpless transfer, applying the algorithm

described in Theorem 1, from F2 to F1 happens (γ is

scheduled in accordance with the distance from the set-

point). Fig. 4 shows the result of applying the proposed

control strategy to remove a step disturbance occurring at

1874



0 100 200 300 400 500 600 700 800 900 1000
0

5

10

T
in

le
t(

o
C

)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

γ

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2
x 10

−5

time (sec.)

q
w

s
 (

m
3
/s

)

Fig. 4. Inlet temperature, scheduling parameter (γ), and the control input
when a family of state feedbacks presented by Theorem 1 acting upon the
HVAC system

400sec.. As can be seen, we have a fast response with no

overshoot. Therefore, the proposed control strategy meets the

control objectives.

It should be noted that as the bumpless transfer approach

presented in this paper relies on stability considerations

only, there is no guarantee as regards the magnitude of the

transients, if the transition is performed quickly. We refer

to [11] for an excellent treatment of the issue of bumpless

transfer for systems with fast switching.

V. CONCLUSIONS

In this paper an algorithm to interpolate between two

observer-based controllers was presented. The proposed al-

gorithm guaranteed the stability of the closed loop system

for the intermediate points. At the end, two numerical

examples were presented. The first example showed that the

naive gain interpolation failed to maintain the stability of

the closed loop system while the algorithm in Theorem 1

worked perfectly to keep the closed loop system stable. The

second example illustrated the application of the proposed

interpolation algorithm to bumpless transfer between two

observer-based controllers.

It should be noted that although the method has been

described only for two state feedbacks and two observer

gains for simplicity, it can easily be extended to larger

numbers of either.
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