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Summary 
An observer based scheme is proposed to detect sensor faults in wind turbines. In the example 
used for the proposed scheme the wind turbine drive train is considered. A model of the drive 
train is used to design the observer, and in this model the wind speed is an important input, 
however, if an unknown input observer the fault detection scheme can be non dependent on the 
actual wind speed. The scheme is validated on data from a more advanced and detailed 
simulation model. The proposed scheme detects the sensor faults a few samples after the 
beginning of the faults. 

Observer Based Detection of Sensor Faults In Wind 
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I. INTRODUCTION 
As wind turbines increases in sizes and more wind turbine turbines are installed offshore the 
need for fast fault detection and accommodation increases. In many industrially manufactured 
wind turbines rather simple schemes are used to detect and accommodate faults.  In this paper 
a three blade horizontal axis turbine is considered, which is controlled in a standard way with 
power optimization in partial load and speed control in full load mode.  
  
In this paper an example on the fault detection and accommodation problem regarding the 
measurements around the drive train is considered. The rotor and generator rotational speed is 
almost always measured. Some designs even include two measurements of both to ensure 
redundancy, and fault detection could be based on a simple voting scheme. The drive train 
connects the rotor with the generator, and it could be modeled such that inputs to it are the 
aerodynamic torque and generator torque. The generator torque is measured/estimated in the 
converter and the aerodynamic torque can be estimated based on an estimate of the wind 
speed. The wind speed is estimated since the measurement is not very reliable.  
 
Some examples can be found of fault detection and accommodation of wind turbines. An 
observer based scheme for detection of sensor faults for blade root torque sensors is presented 
in [1]. A residual based scheme is presented in [2] to detect and accommodate faults in wind 
turbines. Fault detection for electrical conversion systems can be found in [3, 4] and [5] 
 
Due to the uncertainties of the wind speed measurements/estimates it would be beneficial to 
include some robustness towards these uncertainties in the detection scheme. This could e.g. 
be included if an unknown input observer, see [6], is used to generate fault residuals. An 
uncertain extra aerodynamic torque component can then be modeled as an unknown input. This 
scheme is subsequently applied to isolate sensor faults either being at one of the rotor speed 
sensors, the generator speed sensors or the generator torque measurements. In [7] this 
proposed scheme is presented and applied to set of different sensor faults resulting in fixed 
sensor values during the faults. In this paper the scheme is applied to a set of sensor faults in 
terms of a gain factor on the measurements. 
 
First, the system is described, followed by a model of the wind turbine used for the fault 
detection. The subsequent section presents the proposed detection scheme and the design of 
it. A section of simulations presents how the scheme performs. The paper is finalized by a 
conclusion. 
 

II. SYSTEM DESCRIPTION 
The three blade horizontal axis turbine which is considered in this paper is controlled in the 
following way. In partial load of the wind turbine it is controlled to generate as much power as 
possible, this is achieved by keeping a specific ratio between the tip speed of the blades and 
the wind speed, which in turn is obtained by controlling the rotational speed through adjusting 
the converter torque. In the full power region the converter torque is kept constant and the 
rotational speed is adjusted by controlling the pitch angle of the blades which changes the aero-
dynamical power transfer from wind to blades. This part of the wind turbine is illustrated in Fig. 
1. 
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Fig. 1 Illustration of the principle of the wind turbine drive train. For illustrative purposes only two 
of the three blades are shown. 
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The wind turbine drive train in question has a number of measurements.  and  are 
two measurements of the rotor speed,  and  are two measurements of the 
generator speed,  is the torque of the generator controlled by the converter which is 
provided with the torque reference, . The estimated aerodynamic torque is defined as 

. This estimate clearly depends on the wind speed, which unfortunately is very difficult to 
measure correctly. A very uncertain measurement is normally available which is used to provide 
10 minutes mean values. 

A. Model 

The model is first defined in continuous time and subsequently transferred to discrete time. 
 
The aerodynamic model is defined as in (1) 

,    (1) 

Where  is the density of the air,  is the area covered by the turbine blades in its rotation,  
is the pitch angle of the blades,  is the tip speed ratio of the blade. (1) is used to estimate 

 based on an assumed estimated  and measured  and . Due to the 
uncertainty of the estimate this could be considered as being unknown. 
 
A simple one body model is used to represent the drive train, see (2).  
 

,      (2) 

Where  
,    (3) 

 
 is the generator model parameter. This gives a simple state space model of the system, 

see (4)-(5). 
 

,   (4) 

,    (5) 

where  is the gear ratio.  The parameters are chosen such that they represent a realistic 
turbine but not a specific one. The following parameters are used: 

 
and the  table is chosen such that it represent an industrial turbine with blade diameter at 92 
m.  
Subsequently the continues model in (4)-(5) is discretized. This results in the following discrete 
time model. 

,   (6) 

Where 

    (7) 

     (8) 

     (9) 

 
The output equation is: 
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,    (10) 

III. METHOD 
Due to the uncertainty of the estimation of  it would be preferable to introduce some 
robustness in the fault detection scheme. One could see the uncertainty as an unknown input 
signal; consequently an unknown input observer is an obvious choice, see [6]. If system is of 
the following form: 

    (11) 
      (12) 

where  is an unknown input, and  is the unknown input matrix. 
 
The unknown input observer can be found as in (13)-(14). 

   (13) 
    (14) 

where  and are matrices designed to achieve decoupling from the 
unknown input and as well obtain an optimal observer.  is a vector of the states of the wind 
turbine model. The matrices in the unknown input observer are found using the following 
equation see (15)-(22), since system matrices are assumed constant these observer matrices 
are constant as well. 

      (15) 
      (16) 

     (17) 
      (18) 

    (19) 
     (20) 

    (21) 
     (22) 

The system states can subsequently be estimated by (13)-(14). 
 

A. Residual generation 
In order to generate the residuals for the fault detection and isolation system a residual  is 
computed for each sensor  using the unknown input observer scheme for a model where the 
th sensor is removed from the  matrix and measurements, and define this matrix as , and 

the measurement vector from which the th is removed is defined as . The observer for 
estimating  can be seen in (23)-(24). 

    (23) 
    (24) 

The matrices  are found as in (15)-(22) with the only difference that  is 
replaced with . The residual vector consists of some elements defined as, in this case with 5 
sensors: 

,      (25) 

These computed residuals are subsequently used to compute the actual detection signal. 
Define the detection signal for the five sensors as:  as the two rotor angular speed 
detection signals,  ,  and  as the generator torque detection signal. These 
detection signals are computed as in (26)-(30): 
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    (26) 
    (27) 
    (28) 
    (29) 

    (30) 
 
A sensor fault is present at the th sensor if 

,     (31) 
Where  is the threshold of the th fault residual, and  is the recorded maximal value of the 

. The values of these thresholds are found tests on the simulated data, such that false positive 
detections are avoided while the sensor fault is still detected as fast as possible. The values are 
specified as: 
     

IV. SIMULATIONS 
The simulations are performed on a simulation model of the drive train in which measurement 
noises are added to the measurements. In addition a two body model is used to represent the 
drive train itself instead of the one body mode used to design the observer. In this example the 
wind is varying between 7m/s and 13 m/s meaning that in this simulation, the turbine runs in 
partial load, and consequently the pitch angle is constant at 0 deg, and  is controlled to 
keep the optimal tip speed ratio. Measurement noises are added to all sensors with the 
following variances: . These variances are in the 
same order as experimental found values on a wind turbine similar to the turbine represented by 
this simulation model. 
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Fig. 2 Illustration of the blocks in the simulation model. 

 
Sensor faults are simulated by scaling the sensor output for a period of 500 samples (5s). The 
scale values are found according to the absolute values such that the amplitude of the fault is 
realistic. The rotor and generator speed sensors are scaled with a factor of 0.7 and the 
converter torque measurement is scale with a factor of 0.8. In the following figure, normed 
residuals for each sensor are plotted together with the detection thresholds. All detection signals 
( ) can be seen in Fig. 3. 
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Fig. 3 the five  signals plotted together to show the time location of the five different sensor 
faults. 

A. Fault in rotor speed sensor #1 

 has a fault from sample 6000 to sample 6500, and as the plot of the residual compared 
with the threshold shows, now false positive detections are present, see Fig. 4.  
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Fig. 4 Fault residual for , the fault is detected during its presence. 
 

A zoom on the beginning and end of  can be seen in Fig. 5  from which it can be seen that 
the fault is detected from sample 6002 to sample 6502. This means that this sensor fault can be 
detected quite fast without any false positive detections. 
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Fig. 5 A zoom on   during the beginning and end of the sensor fault. 
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B. Fault in rotor speed sensor #2 

 has a fault from sample 9000 to sample 9500, and as the plot of the residual compared 
with the threshold shows that the fault is detected without any false positive detections, see Fig. 
6. In order to find the detection times of this fault, a zoom is made on the beginning and ends of 
the fault. This plot can be seen in Fig. 7, from which it can be seen that the fault is detected 
from sample 9002 to sample 9502, which again results in fast detection of the fault. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

samples [n]

κ ω
r2

 
Fig. 6 Fault residual for , the fault is detected during its presence. 
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Fig. 7 A zoom on  during the beginning and end of the sensor fault. 
 

C. Fault in generator speed sensor #1 

A sensor fault is present in  from sample 12000 to sample 12500. Using the found 
threshold this sensor fault is detected without any false positive detections, even though it 
contains strong reactions on the other generator speed sensor fault. This is due to the specific 
measurement noise sequence in use in this simulation, see Fig. 8. Inspecting a zoom on the 
beginning and end of this specific sensor fault, it can be seen that this fault is detected from 
sample 12005 to 12502, see Fig. 9. 
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Fig. 8 Fault residual for , the fault can be detected during its presence. 
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Fig. 9 A zoom on  during the beginning and end of the sensor fault.  

D. Fault in generator speed sensor #2 

A sensor fault in  is present from sample 15000 to sample 15500. From Fig. 10 it can be 
seen that this sensor fault is detected without any false detections, and with significantly less 
influence from  than  was influenced by . The reason is as mentioned in Section 
IV.C related to the specific measurement noise sequences used in the simulation. The fault is 
detected from sample 15003 to 15502, see Fig. 11. 
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Fig. 10 Fault residual for generator speed measurement no. 2, the fault is detected during its 
presence. 
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Fig. 11 A zoom on  during the beginning and end of this sensor fault. 

E. Fault in converter torque measurement 

The sensor fault is present in the torque measurement from sample 2000 to sample 2500. Fig. 
12 shows that a threshold can be chosen such that false positive detections can be avoided. In 
Fig. 13 a zoom on  is provided for the beginning and end of the fault to determine the 
detection times of these. It can be seen that the beginning of the fault is detected at sample 
2002 and that the end is detected at sample 2502. 
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Fig. 12 Fault residual for the generator torque. .                    

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0

0.5

1

samples [n]

κ τ ge
n

2490 2492 2494 2496 2498 2500 2502 2504 2506 2508 2510
0

0.5

1

samples [n]

κ τ ge
n

 
Fig. 13 A zoom on  during the beginning and end of this sensor fault. 
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V. CONCLUSION 
In this paper an unknown input observer is designed to detect five different sensor faults in the 
drive train of a three blade horizontal axis wind turbine. Since the wind speed is uncertain, it is 
considered as being an unknown input in the observer design. A simple one-body model is used 
of the gear box in the observer model, whereas the system is simulated with a more detailed 
two-body model for simulating the sensor faults. The observer based detection and isolation 
scheme detects all five sensor faults within a few samples after the occurrence of them, without 
any false positive detections. 
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