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Abstract— This paper addresses bumpless transfer between
observer-based controllers with integral action in a gain-
scheduling architecture with application to wind turbine con-
trol. Two methods based on the Youla-Kucera parameterization
are applied to achieve bumpless transfer between controllers
having equal or different number of control signals and
integrators while preserving stability guarantees. Both methods
handle reference signals to the controllers.

The scheduling variable is described by a continuous func-
tion, and even in situations where a transfer between two con-
trollers is only initiated but not finalized, stability is sustained
and no bumps are introduced in the control signals.

The gain-scheduling approaches are verified by simulation
on a non-linear model of a wind turbine.

I. INTRODUCTION

Today, wind energy is the most competitive form of

renewable energy. In the past decade the size and capacity

of wind turbines have increased dramatically. Meanwhile,

the structural components have been made relatively lighter

to keep down costs. This has put higher demands on wind

turbine control schemes, and implementation of advanced

control systems is considered a promising way of decreasing

fatigue loads.

In this paper a three-bladed horizontal-axis variable-speed

variable-pitch wind turbine is considered, which works from

the principle that wind acts on the blades making the rotor

shaft rotate. The aerodynamic properties of the wind turbine

are affected by the pitch angle of the blades, the speed of

the rotor, and the effective wind speed. On this basis, an

aerodynamic torque is applied to the rotor and an aerody-

namic thrust affects the tower. The aerodynamic torque is

transferred to the generator through a drive train in order to

upscale the rotational speed of the rotor.

In terms of control, the wind turbine works in two distinct

regions. Below a certain wind speed, in the partial load

region, the turbine is controlled to generate as much power as

possible. This is achieved by adjusting the generator torque

to obtain an optimum ratio between the tip speed of the

blades and the wind speed. In the full load region the wind

turbine is controlled to produce a rated power output, which

is obtained by pitching the blades to adjust the efficiency of

the rotor.

Various control approaches have been applied in relation

to wind turbine control, such as classical control [1], LQ

Michael O.K. Niss, Thomas Esbensen, and Christoffer Sloth are M.Sc.
students at Automation and Control, Department of Electronic Systems,
Aalborg University, Fredrik Bajers Vej 7C, DK-9220 Aalborg East, Denmark

Jakob Stoustrup is with Automation and Control, Department of Elec-
tronic Systems, Aalborg University, DK-9220 Aalborg East, Denmark

Peter F. Odgaard is with kk-electronic a/s, DK-8260 Viby J, Denmark

control [2], and robust control [3]. Typically, a control

law is calculated based on a linearized plant model at a

selected operating point, and is valid only for a narrow

range of operation. Gain-scheduling is a natural approach

for designing controllers for the entire operating range of the

wind turbine, which is based on intersection of several linear

controllers designed along a chosen operating trajectory. In

[4] and [5] this is done by scheduling parameters according

to a scheduling variable, while in [6] and [7] controller

switches are performed abruptly.

In this paper two gain-scheduling approaches are presented

for performing transitions between controllers of similar or

different structures, respectively. The first method is based on

[8] while the second method furthermore is inspired by [9].

Both methods provide bumpless transfer between observer-

based controllers while maintaining stability guarantees. The

approaches are based on the Youla-Kucera parameterization

of all stabilizing controllers and were demonstrated on the

observer-based robust state-feedback controllers designed for

the wind turbine in [10].

This paper is organized as follows. Section II describes

the model of the wind turbine. In Section III the considered

controllers for the wind turbine are presented for which

bumpless transfer is demonstrated. Section IV presents meth-

ods for performing bumpless transfer between controllers

having identical and different structures. In Section V sim-

ulation results are presented, and the paper is finalized by a

conclusion in Section VI.

II. WIND TURBINE MODEL

A non-linear model of a wind turbine acts as a simulation

model for the proposed control algorithms. The model is

based on a static model of the aerodynamics, a two-mass

model of the drive train, an electromechanical model of

the generator, actuator models, and zero-mean Gaussian

distributed measurement noises.

A. Aerodynamic Model

The rotor of the wind turbine converts energy from the

wind to the rotor shaft, rotating at the speed ωr(t). The power

from the wind depends on the wind speed, the air density, ρ,

and the swept area, A. From the available power in the swept

area, the power on the rotor is given based on the power

coefficient, Cp (λ(t), β(t)), which depends on the pitch angle

of the blades, β(t), and the ratio between the speed of the

blade tip and the wind speed, denoted tip-speed ratio, λ(t).
The aerodynamic torque applied to the rotor by the effective
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wind speed passing through the rotor, vr(t), is given as:

Ta(t) =
1

2ωr(t)
ρAv3

r (t)Cp (λ(t), β(t)) [Nm] (1)

The coefficient Cp describes the aerodynamic efficiency

of the rotor by a nonlinear mapping as illustrated in Fig. 1.
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Fig. 1. Illustration of the power coefficient, Cp.

B. Drive Train Model

The drive train model consists of a low-speed shaft and

a high-speed shaft having inertias Jr and Jg. The shafts are

interconnected by a gear ratio, Ng, combined with torsion

stiffness, Kdt, and torsion damping, Bdt, which result in a

torsion angle θ∆(t). The drive train has efficiency ηdt and

drives the loading torque from the generator, Tg(t), at a speed

ωg(t). The linear model is given as:

Jrω̇r(t) = Ta(t) − Kdtθ∆(t) − Bdtθ̇∆(t) [Nm] (2)

Jgω̇g(t) =
ηdtKdt

Ng

θ∆(t) +
ηdtBdt

Ng

θ̇∆(t) − Tg(t) [Nm] (3)

θ̇∆(t) = ωr(t) −
1

Ng

ωg(t) [rad/s] (4)

C. Pitch System Model

The pitch system tracks a reference, βref(t), and is modeled

as a first order system. Its time constant is τ , and includes

also a communication delay, td.

β̇(t) = -
1

τ
β(t) +

1

τ
βref(t − td) [◦/s] (5)

Besides the linear dynamics described by (5), the model also

includes constraints on the slew rate and operational range.

D. Generator and Converter Models

Electric power is generated by the generator, while a power

converter interfaces the wind turbine generator output with

the utility grid and controls the currents in the generator. The

generator torque in (6) is adjusted by the reference Tg,ref(t).
The dynamics of the converter is approximated by a first

order system with time constant τg and communication delay

tg,d. Just as for the model of the pitch system, the slew rate

and operational range of the converter are limited.

Ṫg(t) = -
1

τg

Tg(t) +
1

τg

Tg,ref(t − tg,d) [Nm/s] (6)

The power produced by the generator can be approximated

from the mechanical power calculated below, where ηg

denotes the efficiency of the generator, which is assumed

constant.

Pg(t) = ηgωg(t)Tg(t) [W] (7)

E. Assembled Model

The interconnection of the wind turbine sub-models is

illustrated in Fig. 2. The input to the model is provided by a

modified version of the wind model SB-2 in [11], to which

the swaying of the tower is added.
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Fig. 2. Block diagram of the wind turbine model.

Available measurements are: generator torque, pitch angle,

generator speed, and rotor speed; all sampled at a rate of

100 Hz. The output power is not available as an actual

measurement, but is evaluated as the product of the mea-

surements of the generator speed and generator torque. To

present the quality of the measurements, these are emulated

as deterministic values with addition of zero-mean Gaussian

noises with the following standard deviations: σT g = 90 Nm,

σβ = 0.2◦, σωg = 0.05 rad/s, and σωr = 0.025 rad/s.

F. Model Parameters

The following parameters are chosen such that they rep-

resent a realistic but fictitious turbine: A = 10,387 m2,

ρ = 1.225 kg/m3, Bdt = 9.45 MNm/(rad/s),

Jr = 55 · 106 kgm2, Jg = 390 kgm2, Kdt = 2.7 GNm/rad,

Ng = 95, ηdt = 0.97, td = 10 ms, τ = 50 ms, tg,d = 20 ms,

τg = 10 ms, ηg = 0.92.

III. MIXED SENSITIVITY CONTROLLERS WITH

INTEGRAL ACTION

To control the wind turbine a set of four different robust

controllers were designed, operating in different regions of

the operational area. The designed controllers are described

in [10] and are based on robust state feedback controllers

combined with optimal observers to provide full state in-

formation. The control law of each controller is given as

u(t) = Fcx(t).
Two different controller structures exist in order to adjust

the controllers to the different objectives in the partial and

full-load regions of the wind turbine. These regions are

further divided into two, to narrow the parameter uncertain-

ties of a region resulting from the non-linear nature of the

aerodynamics.

Each of the controllers has integral states, one for each of

the references that need to be followed. For the controllers

utilized in partial load operation, i.e. in Region 1 and 2, there

exists only a reference to the generator speed, ωg(t). For the
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controllers in full load operation, i.e. in Region 3 and 4, an

additional reference exist to the output power, Pg(t).
In the design of the controllers a mixed sensitivity de-

scription was utilized in order to specify performance re-

quirements. This resulted in additional states in the control

formulation originating from the introduced weight filters;

these are denoted W . Note that τ(t) represents the state of a

first order Padé approximation and an ’e’ in the index denotes

the innovation of the given variable.

The states utilized in the controllers in Region 1 and 2 are:

Tg(t), θ∆(t), ωg(t), ωr(t),
∫

ωg,e(t)dt, vr(t), ωg,ref(t), τT g(t),
Wωg(t), W∫

ωg,e(t), and WT g,ref(t).
For the controllers in Region 3 and 4 the following additional

states are included: β(t),
∫

Pg,e(t)dt, Pg,ref(t), τβ(t), WP g(t),
W∫

Pg,e(t), Wβref(t), and Wβ̇ref(t).

IV. BUMPLESS TRANSFER METHODS

In a transition between different controllers it is desirable

to ensure a bumpless transfer while maintaining stability

guarantees. This paper presents two methods which fulfill

this requirement; one method that enables transitions be-

tween controllers having identical structures, and another

method for making transitions between controllers having

structural differences. Note that both methods assume suffi-

ciently slow transitions.

Both of the presented gain-scheduling methods are based

on the Youla-Kucera parameterization, but are applicable in

different situations. The first method was used for schedul-

ing between controllers with similar structures and is an

extension of the method presented in [8], [12], and [13].

The extension was made in order to include references and

disturbances in the wind turbine controller and to enable

filtering of the integral states. The second method addresses

the transitions between different controller structures. It

utilizes some principals from the first method and is also

inspired by [9] to utilize Youla-Kucera parameterization in

another way.

The methods based on the Youla-Kucera parameterization

were chosen as they, in contrast to a simple weighting of

the control signals from two or more controllers, guarantees

stability for all values of the scheduling variable α ∈ [0; 1],
as discussed in [13].

Scheduling Between Controllers with Similar Structures

The method established in [8], [12], and [13] assumes that

two different linearizations of a system is available, each

valid in different, but overlapping, operating ranges:
[

A1 B1

C1 0

]

and

[

A2 B2

C2 0

]

If the system is detectable and stabilizable, which holds

for the wind turbine model considered in this paper, an

observer-based controller can be designed. No matter which

design approach that has been used, a resulting controller

can always be put on a form where F1 and FI1 describe the

state and integral state feedback matrices. Additionally, S1

is a matrix that picks out the signals to be integrated and L1

is the observer gain matrix. The resulting controller can be

described as:

K1(s) =





A1 + B1F1 + L1C1 B1FI1 -L1

0 0 S1

F1 FI1 0



 (8)

A system set up in the block form written above cor-

responds to the observer-based controller described by the

following equations, where x1(t) and xI1(t) are the observer

and integral states, whereas u(t) and y(t) are the control

signal and measured output:

ẋ1(t) = A1x1(t) + B1 (F1x1(t) + FI1xI1(t))

+ L1 (C1x1(t) − y(t)) (9a)

ẋI1(t) = S1y(t) (9b)

u(t) = F1x1(t) + FI1xI1(t) (9c)

Since an integral state results in a pole in zero for the

open-loop system, it has to be treated with special care in

the considered gain-scheduling method. This is why FI1 is

separated from the rest of the feedback gains contained in

F1.

To be able to use the gain-scheduling method presented

here, the controller must be able to stabilize the system. This

is fulfilled if and only if the following matrices are Hurwitz:

[A1 + L1C1] and

[

A1 + B1F1 B1FI1

S1C1 0

]

The Youla-Kucera parameterization lets a controller be

implemented as a function of a stable system, Q(s), based on

another stabilizing controller, K1(s). The interconnection of

the systems is shown in Fig. 3. As stated in [14] this implies

that it is possible to transfer between two controllers online

in a bumpless manner, without compromising stability, by

scaling the Q(s) system by a factor α ∈ [0; 1], e.g. from the

controller K1(s) to the next controller K2(s).

Q (s)2

G(s)

K1(s)

y(s)

K1( )á

K2(s)

~

G(s)

K(s)1

G(s)

K(s)1

u(s) y(s)u(s) y(s)u(s)

Fig. 3. Left: Interconnection between the system G(s) and the controller
K1(s). Middle: Controller implemented as K1(Q

2
(s)) = K1(s) ⋆ Q

2
(s).

Right: Q2(s) is given as K̃1(α) ⋆ K2(s).

To form the system necessary to perform the scheduling,

the control system matrix in (8) is extended into (11) and

(12). The system in (11) is the original stabilizing controller,

K1(s), extended with interconnections for a Youla-Kucera

parameterization, Q(s), while the system in (12) is designed

to fulfill the following equation:

K1(s) ⋆ K̃1(α) ⋆ K2(s)
∆
= K2(s) for α = 1 (10)

A multi-port system on block form should be interpreted

such that if Fig. 3 is related to (11), the first input column
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in the block system corresponds to the uppermost input in

the figure, the second column to the next input in line, etc.

Exactly the same applies to the outputs.

In the following equations the tuning parameter r de-

termines how far into the left half plane the poles of the

integrators of K̃1(α) should be moved. The constraints r > 0
and W1FI1 = rI should be satisfied.

K1(s) =









A1 + B1F1 + L1C1 B1FI1 -L1 B1

0 0 S1 W1

F1 FI1 0 I

C1 0 -I 0









(11)

K̃1(α) =









A1 0 L1 B1

S1C1 − W1F1 -rI -S1 W1

-αF1 -αFI1 0 αI

C1 0 -I 0









(12)

The matrices specified in (11), (12), and (8) have the fol-

lowing properties, which enable bumpless transfer between

the controllers K1(s) and K2(s):

• For α = 0 the following holds:

K1(s) ⋆ K̃1(α) ⋆ K2(s)
∆
= K1(s), i.e. the resulting

controller is K1(s).
• For α = 1 the following holds:

K1(s) ⋆ K̃1(α) ⋆ K2(s)
∆
= K2(s), i.e. the resulting

controller is K2(s).
• The poles of the closed loop system are, for all α,

identical to the eigenvalues of the matrices listed below.
[

A1 + B1F1 B1FI1

S1C1 0

]

[

A2 + B2F2 B2FI2

S2C2 0

]

[A1 + L1C1] , [A2 + L2C2] , -rI

Let x1 and x̃1 denote the states in K1(s) and K̃1(α)
respectively, then if α has been 1 for some time the states

x̃1 will converge to x1, at a rate given by the eigenvalues

of the following matrix. This is explained in [13] and is

independent of the input signal.
[

A1 + B1F1 B1FI1

S1C1 0

]

To adapt the gain-scheduling method to the considered

wind turbine model, it was necessary to adjust the matrices

presented so far. The reason is that references and distur-

bances had to be added to the general model. Also, some

changes had to be made since it must be ensured that the

integral states of the controller can be filtered, as required

by the mixed sensitivity design method.

The state feedback matrix, Fc, for each of the controllers,

is divided into three matrices. When written for Controller 1

this means that FI1 holds the gains concerning the integral

states, Fd1 holds the gains concerning the references and

disturbances, i.e. ωg,ref(t), Pg,ref(t), and vr(t), while F1

consists of the remaining gains.

For including the disturbances into the systems an extra

input column was added to the system descriptions, K1(s),
K̃1(α), and K2(s), and an extra row was added to the systems

for them to pass on the disturbances to the interconnected

systems. Additionally, to reduce influence from measurement

noise on the control output, the system descriptions were

modified so that the estimated states are integrated instead

of the measurements.

The controller presented in (8) is rewritten into (15),

presented as K2(s) instead. In a similar manner K1(s)
and K̃1(α) are modified to include the additions. They are

presented in (13) and (14). The systems in (13), (14), and

(15) enable transitions between controllers having identical

structures, including references and disturbances.

K1(s) =













A1 + B1F1 + L1C1 B1FI1 + BI1 -L1 Bd1 + B1Fd1 B1

S1C1 0 0 -Nd1 W1

F1 FI1 0 Fd1 I

C1 0 -I 0 0

0 0 0 I 0













(13)

K̃1(α) =













A1 BI1 L1 Bd1 B1

S1C1 − W1F1 -r1I 0 -Nd1 − W1Fd1 W1

-αF1 -αFI1 0 -αFd1 αI

C1 0 -I 0 0

0 0 0 I 0













(14)

K2(s) =





A2 + B2F2 + L2C2 B2FI2 + BI2 -L2 Bd2 + B2Fd2

S2C2 0 0 -Nd2

F2 FI2 0 Fd2



 (15)

where:
Bd1 and Bd2 are matrices which feed the disturbances into the system states

BI1 and BI2 are matrices that feed the state values of the integrators into the output filter states

Fd1 and Fd2 are matrices which are parts of the state feedback matrices, Fc1 and Fc2

Nd1 and Nd2 are matrices that, together with S1 and S2, ensure that the errors according to the references are integrated
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Scheduling Between Controllers with Different Structures

The following method allows for scheduling between

controllers with different structures. For the considered wind

turbine system the controllers in partial load operation only

have a reference to the generator speed, while the controllers

in full load operation have references to both the generator

speed and the output power, which results in a different

structure of the controllers. Fig. 4 illustrates the controller

structure for this proposed gain-scheduling method.

J(1- )á

K2(s)

~

G(s)

J(s)

u(s) y(s)

J( )á

K3(s)

~?
++

Fig. 4. The structure of the controller used in the scheduling between
partial load operation and full load operation, i.e. between Region 2 and 3.

The main difference between the proposed method and

the one presented in the last subsection is that scheduling

will happen between two different Youla-Kucera parameter-

izations, Q
1
(s) and Q

2
(s), instead of scheduling between

a stable Q(s) as extension to the active controller and the

active controller itself.

When operating the robust controller in the region prior

to a transition, i.e. at α = 0, the controller will be given as

shown below, where J (s) and J̃ (α) are systems set up in

the same manner as in (11) and (12) respectively.

K2(s) = J (s) ⋆
(

J̃ (1 − α) ⋆ K2(s) + J̃ (α) ⋆ K3(s)
)

(16)

The idea of the proposed method is that since J (s) never

becomes the active controller it can be designed freely, as

long as it is capable of stabilizing the system. The controller

J (s) is merely an intermediate segment between the system

and either the controller K2(s) for α = 0, the controller

K3(s) for α = 1, or a combination of both controllers.

The advantage of this method is that, although the con-

trollers have different structures, almost the same approach

can be utilized as for the first presented method. The con-

straint is though that J̃ (1 − α) ⋆ K2(s) and J̃ (α) ⋆ K3(s)
need to be stable systems, which is easily obtained by the

method described in the previous subsection, when J (s) is

designed to be a stabilizing controller.

Handling Operating Points

As the controllers were designed for different lineariza-

tions of the system they rely on different operating points.

Hence, it was necessary to compensate for these differences

when scheduling between the different controllers.

[13] proposes that a simple weighting of the steady-state

contribution of each active controller is added to the small

signal output of the controllers. This method was however

shown to be ineffective for the considered system, as it

requires a long scheduling time for the integrators to attain

the correct compensation for the changed steady-state values.

Instead, another approach was utilized where each signal

was changed into an associated large signal value at the

output, but was again adjusted into a small signal value

fitting the next system that it enters. As illustrated in Fig. 5

compensation is needed in four places, but entails no problem

since it is only a matter of adding values to some signals.

K1( )á

K2(s)

~

G(s)

K(s)1

y -1 y2u -2 u1

y1
?u1

-
+

+
+

?

?

+

+

-

+

?

Fig. 5. The structure used for handling operating points.

V. SIMULATION RESULTS

Simulations were performed in MATLAB Simulink to

verify the performance of the designed gain-scheduling

methods. In the implementation of the gain-scheduling meth-

ods, the scheduling variable was implemented as an arcus

tangent function around the intended transition point, which

appears from the subplots showing the scheduling variable.

In partial load operation the scheduling variable depends on

the generator speed, in full load operation it depends on the

pitch angle, and in the transitions between the partial and

full load regions it is a combination of both.

Scheduling Between Controllers with Similar Structures

Fig. 6 shows that a transition from Controller 2 to

Controller 1, i.e. between controllers of similar structures,

imposed no noticeable disturbance on the control signal;

hence, neither on the output. Several transitions were studied

in the evaluation of the method, and even in situations where

a transfer between two controllers was only initiated but not

finalized, the method behaved properly, as dictated by the

design. This is apparent in the figure around t = 110 s.

Notice that the zoom in the figure is adjusted to capture the

two different types of transitions.

Scheduling Between Controllers with Different Structures

Fig. 7 shows a transition from Controller 2 to Controller 3,

i.e. between controllers of different structures, in the sense

of the number of control signals and integrators. When a

transition was performed into the full load region, caused by

an increasing wind speed, the controller started pitching the

blades out of the wind and kept the generator torque around

a constant value, as expected. This change in control strategy

is apparent from the figure.
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VI. CONCLUSION

This paper presents a successful extension to the gain-

scheduling method presented in [8], which is applied to a

variable-speed variable-pitch wind turbine in the transitions

between controllers having identical structures. The method

is extended to include references and disturbances to the

system and to allow filtering of the integral states.

A gain-scheduling method to be applied for scheduling

between controllers having different structures is also pro-

posed. In relation to wind turbine control this is applicable

in the transition between the controllers in the partial and

full load regions, as these have different numbers of control

signals and integrators. The method is developed upon the

first method presented and is inspired by [9].

The two methods are verified to allow bumpless transfers

between the controllers in the wind turbine system.
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