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Abstract— This paper deals with hierarchical model predic-
tive control (MPC) of smart grid systems. The objective is to
accommodate load variations on the grid, arising from varying
consumption and natural variations in the power production
e.g. from wind turbines. This balancing between supply and
demand is performed by distributing power to consumers in an
optimal manner, subject to the requirement that each consumer
receives the specific amount of energy the consumer is entitled
to within a specific time horizon. However, in order to do so, the
high-level controller requires knowledge of how much energy
the consumers can receive within a given time horizon. In this
paper, we present a method for computing these bounds as
convex constraints that can be used directly in the optimisation.
The method is illustrated on a simulation example that uses
actual wind data as load variation, and fairly realistic consumer
models. The example illustrates that the exact bounds computed
by the proposed method leads to a better power distribution
than a conventional, conservative approach in case of fast
changes in the load.

I. INTRODUCTION

One of the greatest challenges in introducing large ratios
of renewable energy into existing electric power systems, is
the fluctuating and unpredictable nature of power sources
that harvest energy from wind, waves and sunlight. One
of the main approaches to dealing with this difficulty, is a
gradual shift toward so-called “smart grid” infrastructures,
where both producers and consumers are equipped with con-
trol capabilities that allow them to participate in balancing
efforts, etc. [1], and where discrepancies between supply and
demand can be evened out via (short-term) storage of energy
[2] or by voluntarily displacing consumption in time, so-
called demand-side management [3]. One way to achieve this
in practise is to exploit large thermal time constants in deep
freezers, refrigerators, local heat pumps etc.; extra energy
can be stored during off-peak hours, and the accumulated
extra cooling can then be used by turning compressors and
similar devices on less frequently during peak hours—see
e.g., [4] and [5].

Since power systems are multi-variable and subject to
constraints, and future reference estimates are often known
in advance, e.g., from 24-hour power consumption traces,
weather forecasts, etc., a natural choice for the top-level
controller will in most case be some sort of model-predictive
controller (MPC)—see for instance [6], [7], [8] or [9].

In an earlier paper [10], the authors proposed a hierarchical
control architecture for this type of system, which distributes
power to consumers in such a way that the consumers
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participate actively in balancing external load disturbances on
the grid while at the same time consuming a pre-determined
amount of energy over a given time interval. However, the
consumers are obviously subject to both power and energy
constraints; hardware such as compressors can only consume
certain amounts of power at any given time, and it is only
allowed to store or release certain amounts of energy within
a given interval, thus avoiding spoiling stored food in deep
freezers, ensuring comfortable temperatures in housing, etc.
The problem is that these constraints depend in a complicated
manner on the current energy stored in the consumers, as
well as how the power is distributed between them. Simple
constraint estimates will therefore not allow the consumers
to be used to their full potential in case of rapid load
fluctuations.

In this paper, we present a method for computing non-
conservative future constraints for a (possibly large) number
of consumers, based on knowledge of their individual power
and energy constraints. The method is illustrated on a simula-
tion example that uses actual wind data as load variation, and
fairly realistic consumer models. The example illustrates that
the exact bounds computed by the proposed method leads
to a more efficient power distribution than a conventional,
conservative approach in case of fast changes in the load.

We begin by describing the consumers in more detail
in Section II, and argue that the power and energy con-
straints give rise to well-defined convex polytopes. Section
III presents the main contribution, a method for computing
the optimisation constraints. Section IV then goes into more
detail with a hierarchical predictive control scheme for smart
grids. Finally, Section V demonstrates the efficiency of the
constraint computation.

Our notation is mostly standard. We denote by (·)∗ a
stacked vector on a finite horizon of length Nh, e.g P∗i,k =[
PT

i,k PT
i,k+1 ... PT

i,k+Nh−1
]T

.

II. RESOURCE POLYTOPES

We consider a setup of the form shown in Figure 1, where
Pload is a load imbalance that must be compensated for. The
control system is able to do so by either distributing power to
consumers ICi, i = 1, . . . ,N, or by requesting external power
units to produce the required amount Pext. In most cases, it
is desirable to minimise rapid changes in Pext by distributing
these to the ICs instead. Further details about the setup can
be found in [10]; for now, we concentrate on the intelligent
consumers.

We consider a simple discrete time setting, where each
IC can be described as an integrator with the energy storage



Fig. 1. Control architecture with grid-level control and intelligent con-
sumers [10].

equation
Ei,k+1 = Ei,k +Ts(Pi,k−Pc,i) (1)

where Ei is the energy stored in the i-th IC, Pi is the power
delivered to the IC, Pc,i is the (constant) power consumed,
and Ts is the size of the time step. For ease of notation, we
will assume Ts = 1 in the following. We further assume that
Pc,i = 0. If this is not the case, the average consumption can
be considered as part of the external load, and the IC seen
as only the controllable consumption around this average.

The consumption rate and energy storage levels are limited
by physical constraints:

Pi ≤ Pi ≤ Pi, E i ≤ Ei ≤ E i. (2)

In order to be of use in predictive control, these constraints
must be formulated as constraints on the control variable, Pi,
over a finite horizon.

Starting at time step k, the constraints limit the potential
consumption of ICi as illustrated in Figure 2. As shown in the
figure, over a finite horizon of length Nh > 0, the constraints
on P∗i can also be represented by a polytope in RNh . Clearly,
the level constraints mean that the constraints at one time step
depend on the consumption rate at the previous time step;
that is, as long as the constraints E i ≤ Ei ≤ E i are not active,
the polytope is a hypercube, but when the level constraints do
become active, they ‘cut off’ convex subsets of the hypercube
via intersection by hyperplanes, as indicated in the upper
right part of the figure.

III. MINKOWSKI ADDITION OF RESOURCE POLYTOPES

As shown above, the feasible consumption rates are con-
strained to a convex polytope in RNh . Generally, a convex
polytope can be represented by a half plane description,
Π= {x∈RNh |Φx≤ γ}, where Φ∈RM×Nh is a matrix, γ ∈RM

is a vector, and ≤ is taken element-wise, or by a vertex
description, Π = {∑Nv

i=1 αivi|0 ≤ αi, ∑
Nv
i=1 αi ≤ 1}, where vi

are the Nv vertex vectors of the convex polytope [11].
Tools for automatic conversion between the two represen-

tations exist, for instance MPT [12], but the computations
remain challenging, so it is important to choose the most
appropriate representation. In this case, the nature of the

Fig. 2. At a given time step k, power (−−−) and energy (− · −)
constraints limit the future consumption for consumer i. The feasible power
consumption that can be consumed by the IC within the next two time steps
is indicated by the shaded area. The feasible set can also be represented as
a polytope (right).

Fig. 3. Minkowski summation of two resource polytopes.

resource distribution problem leads to convex polytopes with
a particular structure, which makes the vertex representation
the more attractive choice. Furthermore, conversion to half-
plane representation becomes simple and well-conditioned.

The Minkowski sum of a number of convex polytopes,
Π1, . . . ,Πn is defined as the (polytopic) set of all sums of ele-
ments from the individual polygons, i.e. ΠΣ = {∑n

i=1 xi|xi, i=
1, . . . ,n}. This is exactly what we need to compute for the
ICs, in order to provide the control level with a single
constraint set; given consumption capacities for a number
of ICs over a horizon, the total capacity will be given by the
Minkowski sum of these.

Consider the example convex polytopes in Figure 3. The
horizon length is 2, and the axes represent the consumption
rates in the first and second time steps. The top plots
represent two ICs, the bottom plots the resulting sum. We
make the following observations:

• consumption rate and capacity limits cannot simply be
added to give the Minkowski sum.

• if we view some of the vertices as multiple, the convex
polytopes all have the same basic shape.

• the sum can be considered as a consumer in itself
with consumption rate and capacity limits, only now



the rate limits vary over the horizon, and for Nh > 2,
capacity constraints may be needed for all combinations
of samples.

Computing the Minkowski sum of a large number of
general polytopes is computationally demanding [13]. Given
vertex representations, all possible combinations of vertices
can be computed and the Minkowski sum will then be
spanned by all these vertex sums. For a high number of
consumers, this is not feasible; however, if the vertices
can somehow be ordered in the same sequence for each
consumer, then it is only necessary to perform the summa-
tion vertex by vertex. This is indeed possible for resource
polytopes, by permitting some vertices to be identical.

Algorithm 1 PowerVertices(E∗,E∗,P,P)

Nh← dim(E∗)
L← (Nh−1)!2Nh−1

Initialize V ∈ R2NhL×Nh

for k = 1 to Nh do
vmax,k←min(P,E∗k−max(P · k,E∗k))
for l = 1 to L do

Vl+2(k−1)L,k← vmax,k
end for

end for

for k = 1 to Nh do
if k = 1 then

Ω
∗← [E∗2− vmax,1, . . . ,E∗Nh

− vmax,1]

Ω
∗← [E∗2− vmax,1, . . . ,E

∗
Nh
− vmax,1]

else
Ω
∗← [E∗1, . . . ,E

∗
k−1,

E∗k+1− vmax,k, . . . ,E∗Nh
− vmax,k]

Ω
∗← [min(E∗1,E

∗
k− vmax,k− ((k−1)−1) ·P),

min(E∗2,E
∗
k− vmax,k− ((k−1)−2) ·P),

. . . ,
min(E∗k−1,E

∗
k− vmax,k),

E∗k+1− vmax,k, . . . ,E
∗
Nh
− vmax,k]

end if
if Nh > 1 then

Λ = PowerVertices(Ω∗,Ω∗,P,P)
for l = 1 to L do

for m = 1 to Nh, m 6= k do
Vl+2(k−1)L,m← Λl,m

end for
end for

end if
end for

The steps above are now repeated for the lower-bound
vertices, replacing (·) by (·) and min(·) by max(·), storing
the result in Vl+2(k−1)L+L,·, l = 1, . . . ,L.

return V

Algorithm 1 is a recursive algorithm that produces a
Nh!2Nh ×Nh matrix V , where each row is a vertex vector

representing a possible combination of minimum and maxi-
mum consumption over the horizon Nh. The initial resource
level is assumed to be zero.

Each call to the algorithm consists of three main oper-
ations. First, variables are initialized for storage; next, we
iterate through the prediction horizon and compute extreme
upper bounds for each sample by assuming that the absolute
minimum power has been pulled from the unit at all previous
samples. Thirdly, for each sample in turn, we assume that
the considered sample is at the extreme upper bound and
compute new upper and lower energy bounds according to
this assumption. The computation is then repeated with the
new set of constraints until the end of the horizon is reach.
Finally equivalent computations are made for the lower-
bound vertices essentially by exchanging minimisation and
maximisation.

When completed, the algorithm has generated all potential
Nh!2Nh vertices, many of which will be identical, but all of
which will be on the boundary of the convex polytope.

For optimisation purposes, a half plane representation
is more suitable than the vertex representation resulting
from Algorithm 1. As mentioned, the conversion can be
performed automatically by existing tools, but for a large
number of vertices, it becomes computationally complex. An
approximate (over-bounding) but fairly accurate conversion
can be performed by considering rate and capacity con-
straints directly. Assume that a resource polytope is spanned
by vertex vectors vi, i = 1..Nv, and that the j-th element
of vi, vi, j, is the coordinate for the j-th time step. Then
capacity constraints are simply found as E = maxi ∑

Nh
j=1 vi, j

and E =mini ∑
Nh
j=1 vi, j. Time varying consumption constraints

are P j = maxi vi, j and P j = mini vi, j. We then have the half
plane representation

I
−I
T
−T

P≤


w
−w
W1
−W1

 (3)

where T is a Toeplitz matrix with the i-th row consisting of
i ones followed by Nh− i zeros, and 1 is a column vector
consisting of Nh ones.

IV. DISTRIBUTION

When controlling a large number of ICs, having a decision
variable and a set of constraints for each is not computation-
ally feasible (see [14] for more details).

To alleviate this, we introduce a number of so-called
aggregators A j,1 ≤ j ≤ NA. An aggregator serves as an
interface to a subset J j of ICs, aggregating their capacities
into one constraint set. In the following we will present how
to aggregate the resource polytope representations for the ICs
under an aggregator’s jurisdiction.

The proposed scheme is shown in Figure 4. On both top
and aggregator levels, everything is computed over a receding
horizon of Nh time steps.

Starting from the lowest level, the ICs provide the aggre-
gators with their current resource levels, Pi. From these, the



Fig. 4. Control architecture with grid-level control, aggregators and
intelligent consumers. At each sample instant, consumer ICi receives power
Pi and returns information of its own energy storage level Ei.

aggregators compute the consumption constraints of each IC
over the horizon. Using the vertex representation described
in Section III, these constraints are then added to provide
constraints provided to the top level.

Once the top level has received the resource polytopes it
has full knowledge of the flexibility available in the system.
This means that no “iterative price coordination [8]” is
needed between the two upper layers of the hierarchy.

Given these constraints, the top level can then optimise a
performance function using the sum of consumptions P∗

Σ
=

∑
N
i=1 P∗i,k as a decision variable.
The consumption sum P∗

Σ
is then distributed between the

aggregators, which further distribute it among the ICs. The
distribution should be performed in a way that ensures that
constraints can be met over the entire horizon.

At the top level, a half plane representation of the con-
straints Φa,iP∗a,i ≤ γa,i, i = 1, . . . ,NA is computed for each ag-
gregator. The optimisation and distribution is then performed
by solving a standard quadratic program at sample k:

min
P∗a,1,...,P

∗
a,NA

NA

∑
i=1

(
k+Nh−1

∑
j=k

Pa,i, j− ∑
j∈J i

Ẽ j,k)
2 (4)

s.t. Φa,iP∗a,i ≤ γa,i, i = 1, . . . ,NA

NA

∑
i=1

P∗a,i = P∗Σ

These consumption rates can then be distributed by the
aggregators among their associated ICs in a similar manner,
i.e., for aggregator j at sample k we solve the optimisation

problem:

min
w∗m,k,m∈J j ∑

i∈J j

(
k+Nh−1

∑
j=k

Pi, j− Ẽi,k)
2 (5)

s.t. ΦiP∗i ≤ γi, i ∈J j

∑
i∈J j

P∗i = P∗a,i

where Φi,γi represent constraints for the individual ICs.
The ICs will then absorb their assigned consumption

during a time step, after which the entire procedure is
repeated for the new resource levels.

A. Computational burden

The main computational burdens are the vertex generation,
the top level distribution and the aggregator level distribution,
all of which must be performed at each time step. Summation
of vertices, the top level optimisation and conversion to half
plane representations are not major burdens.

The vertex generation can be performed separately for
each IC and is thus easily distributed among aggregators. It
could even be performed by the ICs, but then a large amount
of data would need to be transferred upwards.

In the current implementation, the computational burden
of performing the distribution at the top level or by an
aggregator can fairly accurately be approximated by

distribution load: βd2NhNd2+β0, (6)

and the vertex computation at an aggregator by

vertex load: βvNh!2NhNd , (7)

where Nd is the number of associated consumers or aggrega-
tors in the layer directly below. Using cpu running times as
provided by Matlab simulation studies indicate βv ≈ 0.125β0
and βd ≈ 0.015β0 on a standard PC.

B. Communication load

The biggest data flow results from the vertex tables be-
ing communicated upward in the hierarchy. Resource flow
profiles over the horizon are communicated downwards, but
these are quite small in comparison. The vertex tables are
of size Nh!2Nh ×Nh and an upper layer must receive one
from each of its associated aggregators at each time step.
If the aggregators (rather than the consumers) perform the
vertex computation, then only the current resource level must
be communicated from each consumer, and each consumer
need only be given a consumption demand for each time step.
There is no need for communication between aggregators on
the same level or between consumers.

C. Mid-ranging

At times when the disturbances are steady, the top level
should attempt to keep the resources at the consumers at
a level that ensures wide manoeuvrability in response to
future disturbances, i.e. by keeping the levels away from
the capacity limits. Let Ere f ,i denote a reference level for
consumer i. The desired consumption from the IC point of



view is then Ẽi,k = Ere f ,i − Ei,k. By adding a term taking
this into account, e.g. βr(∑

N
j=0 Ẽ j,k −∑

Nh−1
i=0 P∗

Σ,k,i)
2, to the

performance function at the top level, the optimisation will
bring the levels closer to the references when there is no
need to use the consumers in the overall balancing.

Note that the aggregators are not required to submit all
energy levels of the consumers to the top level. Only the sum
associated with each aggregator needs to be communicated
in order to compute the total sum.

V. SIMULATION EXAMPLE

The simulation example considers a power grid consisting
of a wind farm, a set of intelligent consumers (ICs), namely
heat pumps and refrigeration systems, a set of regular con-
sumers (RCs) and a power plant.

The wind farm and the power plant are the production
capacities. The RCs must be supplied a constant power at all
times. The average production of the wind farm and power
plant thus corresponds to the base consumption of the RCs.
The wind farm production however exhibits fast fluctuations,
which must be balanced by the ICs and if necessary by the
power plant.

The ICs at the lowest level are modeled as simple power
and energy constraint units governed by their own energy
balance as explained in Section II.

The top level controller has three objectives. As explained
earlier the energy supplied to the RCs is the average pro-
duction of the wind farm and power plant. Fluctuations of
the wind power production however must be balanced by the
ICs and power plant. The first objective is therefore to keep
the energy balance

Ek+1 = Ek +Ts(Pplant,k−Pwind,k−PΣ,k)

close to zero, where PΣ,k = ∑
N
i=1 Pi,k is the power absorbed

by the ICs, Pwind are fluctuations of the wind farm power
production and Pplant is the power plant deviation from the
base line production.

The second objective is to reduce the strain on the power
plant by limiting the size of changes in production and the
last objective of the top level controller is to bring the ICs
close to their reference levels. With these three objectives the
optimisation problem at the top level for a prediction horizon
Nh is

min
P∗

Σ,k,P
∗
plant, k

Nh

∑
i=1

zT
k+iQizk+i +βr(

N

∑
j=0

Ẽ j,k−
Nh−1

∑
i=0

P∗Σ,k,i)
2

where

zk =

 Ek
Pplant, k−Pwind, k

Pplant, k−Pplant, k-1


and Qi = diag(βe,βq,βp) for i = 1,2, ...,Nh−1. The terminal
weight QNh is found by standard dual mode MPC methods
[7]. The penalty on Pplant − Pwind is included to improve
closed loop performance.

The wind farm power production, which has to be bal-
anced in the simulations, consist of production data from

Refr. syst. [15] Heat pump [16]
Maximum power 10 kW 4.3 kW

∆T 1 K 3 K
Volume 5 m3 12 m3

Volm. heat cap. 1.9 MJ
m3K (ice) 2.4 MJ

m3K (concr.)
Average power 7 kW 3 kW

E i 2.6 kWh 8 kWh
E i 0 kWh 0 kWh
Pi 3 kW 1.3 kW
Pi -7 kW -3 kW

TABLE I
PARAMETERS FOR THE CONSIDERED ICS.

Horns Rev 2, a 209 MW offshore wind farm in the North Sea
owned and operated by DONG Energy. The period covered
extends from 15:00 to 22:00 of February 1st 2011 and the
average production value has been subtracted, since it is used
to supply the RCs.

Two types of ICs are considered, namely a domestic heat
pump and a supermarket refrigeration system. The ICs are
modeled as simple energy and power constraint units, so
the internal dynamic is not modeled in detail. These ICs
each have a primary purpose, which must be met, namely to
keep the house and frozen goods within a certain acceptable
temperature interval. The main mediums, which the heat
pump and cooling system must respectively heat and cool,
are the concrete floor of a single family home and the freezer
content. The thermal energy resource available is thus given
by C ·V ·∆T , where V and C are the volume and volumetric
heat capacity of the main medium and ∆T is the acceptable
temperature interval. The heat pump is assumed to have a
coefficient of performance of 3.0, so the electrical energy
resource is one third of the thermal resource. Additional
parameters are βe = 1, βp = 2, βr = 0.002, βq = 0.1 and
Nh = 4, corresponding to

QNh =

 7.4 -1.7 0
-1.7 2.1 0

0 0 10

 .
Four aggregators are included in the simulations and each
aggregator handles 400 heat pumps and 400 refrigeration
systems. The time step is 15 minutes and Pwind is assumed
known over the horizon Nh.

The advantage of the resource polytopes is, that the full
flexibility of the ICs are communicated to the top level.
To illustrate the impact of this, the method is compared to
a setup, denoted the cautious method, where the interface
between top- and aggregator level does not allow constraints
to vary over the horizon Nh.

Everything at the top- and aggregator level is computed
over a horizon of Nh time steps. Given a horizon of Nh at
time step k the cautious aggregators determine Pi,Cautious =

min(Pi,
E i−Ei,k

Nh
) and Pi,Cautious = max(Pi,

E i−Ei,k
Nh

). These val-
ues are communicated to the top level, which should provide
at most Pi,Cautious and at least Pi,Cautious to each IC at each
time step over the next prediction horizon. This insures that
the energy constraints of the IC’s are not violated.



Fig. 5. Pwind, Pplant and total energy balance. The resource polytope method
is noticeably better at maintaining the energy balance.

Fig. 6. Power consumption for an ICheat and an ICcool with resource
polytopes and the cautious method.

Simulation results are give in Figure 5, which depicts
Pwind , Pplant , ECautious and EResource Polytopes. The two methods
have to balance the exact same oscillations with the exact
same resource available, but the resource polytope method
is noticeably better at maintaining the energy balance. The
reason for this can be seen in Figure 6. For the relatively
slow heat pump the performance of the two methods is as
expected quite similar. For the faster refrigeration system,
however, the polytope method is able to get closer P, when
needed, which means a better utilisation of the flexibility.

VI. DISCUSSION

We have presented a novel way to represent resource
storage capacity, which has the useful properties that:
• the main constraint computation can be performed sep-

arately for each consumer,

• the aggregated constraints of a set of consumers can be
computed without approximation by a simple summa-
tion,

• conversion to half plane representations, useful for op-
timisation, can be performed at low cost.

Since the constraint aggregation is exact, the scheme is
nearly optimal. With respect to the distribution, it is possible
that, in terms of future flexibility, a slightly better distribution
could be obtained by a direct distribution at the top level, but
for a high number of consumers this does not seem feasible
to implement.
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